Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 278-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that for the fields depending on only two of the four space-time coordinates, the spaces of local solutions of various integrable reductions of Einstein's field equations are the subspaces of the spaces of local solutions of the “null-curvature” equations selected by universal (i.e., solution-independent conditions imposed on the canonical (Jordan) forms of the desired matrix variables. Each of these spaces of solutions can be parameterized by a finite set of holomorphic functions of the spectral parameter, which can be interpreted as a complete set of the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. We show that both the direct and inverse problems of such a map, i.e., the problem of finding the monodromy data for any local solution of the null-curvature equations for the given Jordan forms and also of proving the existence and uniqueness of such a solution for arbitrary monodromy data, can be solved unambiguously (the “monodromy transform”). We derive the linear singular integral equations solving the inverse problem and determine the explicit forms of the monodromy data corresponding to the spaces of solutions of Einstein's field equations.
Keywords: Einstein's equations, string gravity, integrability, singular integral equations
Mots-clés : monodromy.
@article{TMF_2005_143_2_a6,
     author = {G. A. Alekseev},
     title = {Monodromy-data parameterization of spaces of local solutions of integrable reductions of {Einstein's} field equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {278--304},
     year = {2005},
     volume = {143},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a6/}
}
TY  - JOUR
AU  - G. A. Alekseev
TI  - Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 278
EP  - 304
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a6/
LA  - ru
ID  - TMF_2005_143_2_a6
ER  - 
%0 Journal Article
%A G. A. Alekseev
%T Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 278-304
%V 143
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a6/
%G ru
%F TMF_2005_143_2_a6
G. A. Alekseev. Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 278-304. http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a6/

[1] V. A. Belinskii, V. E. Zakharov, ZhETF, 75 (1978), 1953 ; 77 (1979), 3 | MR | MR

[2] B. K. Harrison, Phys. Rev. Lett., 41 (1978), 1197 | DOI | MR

[3] G. Neugebauer, J. Phys. A, 12 (1979), L67 ; 13 (1980), 1737 | DOI | MR | DOI | MR

[4] I. Hauser, F. J. Ernst, Phys. Rev. D, 20 (1979), 362 | DOI | MR

[5] W. Kinnersley, J. Math. Phys., 18 (1977), 1529 | DOI

[6] W. Kinnersley, D. M. Chitre, J. Math. Phys., 18 (1977), 1538 | DOI

[7] W. Kinnersley, D. M. Chitre, J. Math. Phys., 19 (1978), 1926 | DOI

[8] I. Hauser, F. J. Ernst, Phys. Rev. D, 20 (1979), 1783 | DOI | MR

[9] G. A. Alekseev, Pisma v ZhETF, 32 (1980), 301

[10] G. A. Alekseev, DAN SSSR, 268:6 (1983), 1347 | MR

[11] V. A. Belinskii, ZhETF, 77 (1979), 1239

[12] V. A. Belinskii, Pisma v ZhETF, 30 (1979), 32

[13] I. Bakas, Nucl. Phys. B, 428 (1994), 374 ; E-print hep-th/9402016 | DOI | MR | Zbl

[14] A. Kumar, K. Ray, Phys. Lett. B, 358 (1995), 223 | DOI | MR

[15] D. V. Gal'tsov, Phys. Rev. Lett., 74 (1995), 2863 ; D. V. Gal'tsov, O. V. Kechkin, Phys. Lett. B, 361 (1995), 52 ; Phys. Rev. D, 54 (1996), 1656 ; D. V. Gal'tsov, S. A. Sharakin, Phys. Lett. B, 399 (1997), 250 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR

[16] A. Das, J. Maharana, A. Melikyan, Monodromy, duality and integrability of two dimensional string effective action, E-print hep-th/0210012 | MR

[17] G. A. Alekseev, “Integriruemost obobschennykh (matrichnykh) uravnenii Ernsta v teorii strun”, TMF, 144:2 (2005), 214–225 ; E-print hep-th/0410246 | DOI | MR

[18] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, 2nd edition, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[19] V. Belinski, E. Verdaguer, Gravitational Solitons, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[20] G. A. Alekseev, Tr. MIAN SSSR, 176, 1987, 211 | MR | Zbl

[21] N. R. Sibgatullin, Kolebaniya i volny v silnykh gravitatsionnykh i elektromagnitnykh polyakh, Nauka, M., 1984 | MR | Zbl

[22] G. Neugebauer, Phys. Lett. A, 86:2 (1981), 91 | DOI | MR

[23] G. A. Alekseev, DAN SSSR, 283:3 (1985), 577 | MR

[24] G. A. Alekseev, “Monodromy transform approach to solution of some field equations in general relativity and string theory”, Proc. of Workshop on “Nonlinearity, Integrability and all that: Twenty Years after NEEDS'79”, eds. M. Boiti et al., World Scientific, Singapore, 2000, 12 ; E-print gr-qc/9911045 | DOI | MR | Zbl

[25] G. A. Alekseev, “Explicit form of the extended family of electrovacuum solutions with arbitrary number of parameters”, Abstracts of Contributed Papers of 13th Intern. Conf. on General Relativity and gravitation, eds. P. W. Lamberti, O. E. Ortiz, Huerta Grande, Cordoba, Argentina, 1992, 3

[26] G. A. Alekseev, A. A. Garcia, Phys. Rev. D, 53 (1996), 1853 | DOI | MR

[27] G. A. Alekseev, “Integrability of the boundary value problems for the Ernst equations”, Proc. of Workshop “Nonlinear Evolution Equations and Dynamical Systems” (Dubna, 1992), eds. V. Makhankov et al., World Scientific, Singapore, 1993, 5 | MR

[28] F. J. Ernst, Phys. Rev., 167:2 (1968), 1175 ; 168:2, 1415 | DOI

[29] I. Hauser, F. J. Ernst, J. Math. Phys., 21 (1980), 1126 | DOI | MR

[30] I. Hauser, F. J. Ernst, Gen. Rel. Grav., 33 (2001), 195 | DOI | MR | Zbl

[31] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[32] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR