Construction of form factors of composite systems by a generalized Wigner–Eckart theorem for the Poincaré group
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 258-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the previously developed relativistic approach for electroweak properties of two-particle composite systems to the case of nonzero spin. This approach is based on the instant form of relativistic Hamiltonian dynamics. We use a special mathematical technique to parameterize matrix elements of electroweak current operators in terms of form factors. The parameterization is a realization of the generalized Wigner–Eckart theorem for the Poincaré group, used when considering composite-system form factors as distributions corresponding to reduced matrix elements. The electroweak-current matrix element satisfies the relativistic covariance conditions and also automatically satisfies the conservation law in the case of an electromagnetic current.
Keywords: Wigner–Eckart theorem, form factors, composite systems, relativistic Hamiltonian dynamics.
Mots-clés : Poincaré group
@article{TMF_2005_143_2_a5,
     author = {A. F. Krutov and V. E. Troitsky},
     title = {Construction of form factors of composite systems by a generalized {Wigner{\textendash}Eckart} theorem for the {Poincar\'e} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {258--277},
     year = {2005},
     volume = {143},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a5/}
}
TY  - JOUR
AU  - A. F. Krutov
AU  - V. E. Troitsky
TI  - Construction of form factors of composite systems by a generalized Wigner–Eckart theorem for the Poincaré group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 258
EP  - 277
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a5/
LA  - ru
ID  - TMF_2005_143_2_a5
ER  - 
%0 Journal Article
%A A. F. Krutov
%A V. E. Troitsky
%T Construction of form factors of composite systems by a generalized Wigner–Eckart theorem for the Poincaré group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 258-277
%V 143
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a5/
%G ru
%F TMF_2005_143_2_a5
A. F. Krutov; V. E. Troitsky. Construction of form factors of composite systems by a generalized Wigner–Eckart theorem for the Poincaré group. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 258-277. http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a5/

[1] E. V. Balandina, A. F. Krutov, V. E. Troitskii, TMF, 103 (1995), 41 | Zbl

[2] R. Gilman, F. Gross, J. Phys. G, 28 (2002), R37 | DOI

[3] B. D. Keister, W. Polyzou, Adv. Nucl. Phys., 20 (1991), 225

[4] A. F. Krutov, V. E. Troitsky, Phys. Rev. C, 65 (2002), 045501 | DOI

[5] A. F. Krutov, V. E. Troitsky, Phys. Rev. C, 68 (2003), 018501 | DOI

[6] A. A. Cheshkov, Yu. M. Shirokov, ZhETF, 44 (1963), 1982 | MR

[7] M. Mozrzymas, Wigner–Eckart theorem for tensor operators of Hopf algebras, E-print math-ph/0404019 | MR

[8] V. M. Dubovik, V. V. Tugushev, Phys. Rep., 187 (1990), 145 | DOI

[9] Yu. V. Novozhilov, Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972 | MR

[10] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[11] A. F. Krutov, V. E. Troitskii, Vestn. SamGU – Estestvennonauchnaya seriya, Spets. vyp.:2 (2003), 95; E-print hep-ph/0403046

[12] A. F. Krutov, V. E. Troitsky, Eur. Phys. J. A, 16 (2003), 285 | DOI

[13] V. M. Muzafarov, V. E. Troitskii, YaF, 33 (1981), 1461