Quantum versus classical uncertainty
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 231-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The uncertainty of an observable in a quantum state is usually described by variance. This description is well suited when the states are pure. But when the states are mixed, things become subtle, and the variance is a hybrid of quantum and classical uncertainties. Motivated by the notion of Fisher information in statistical inference, we establish a decomposition of the variance into quantum and classical parts. The key observation is that the Wigner–Yanase skew information (a distinguished version of quantum Fisher information) can be interpreted as a measure of quantum uncertainty. We also establish a decomposition of the conventional covariance into quantum and classical parts. The results provide a new perspective for understanding uncertainty and correlation and are used to quantify entanglement, as well as to establish a new uncertainty relation in purely quantum terms.
Keywords: uncertainty, classical uncertainty, quantum uncertainty, skew information, quantum correlation, uncertainty principle.
Mots-clés : entanglement
@article{TMF_2005_143_2_a3,
     author = {S. L. Luo},
     title = {Quantum versus classical uncertainty},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--240},
     year = {2005},
     volume = {143},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a3/}
}
TY  - JOUR
AU  - S. L. Luo
TI  - Quantum versus classical uncertainty
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 231
EP  - 240
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a3/
LA  - ru
ID  - TMF_2005_143_2_a3
ER  - 
%0 Journal Article
%A S. L. Luo
%T Quantum versus classical uncertainty
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 231-240
%V 143
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a3/
%G ru
%F TMF_2005_143_2_a3
S. L. Luo. Quantum versus classical uncertainty. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 231-240. http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a3/

[1] R. F. Werner, Phys. Rev. A, 40 (1989), 4277 ; S. Popescu, Phys. Rev. Lett., 72 (1994), 797 ; 74 (1995), 2619 ; M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A, 200 (1995), 340 ; Phys. Rev. Lett., 80 (1998), 5239 ; N. Gisin, Phys. Lett. A, 210 (1996), 151 ; H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher, Phys. Rev. Lett., 76 (1996), 2818 ; C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters, Phys. Rev. A, 54 (1996), 3824 | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | DOI | MR

[2] V. Vedral, M. B. Plenio, M. A. Rippin, P. L. Knight, Phys. Rev. Lett., 78 (1997), 2275 ; V. Vedral, M. B. Plenio, Phys. Rev. A, 57 (1998), 1619 ; G. Vidal, J. Mod. Opt., 47 (2000), 355 ; G. Vidal, R. F. Werner, Phys. Rev. A, 65 (2002), 032314 ; M. Horodecki, Quantum Inf. Comput., 1 (1) (2001), 3 ; W. K. Wootters, Quantum Inf. Comput., 1 (1) (2001), 27 ; R. F. Werner, M. M. Wolf, Quantum Inf. Comput., 1 (3) (2001), 1 | DOI | MR | Zbl | DOI | DOI | MR | DOI | MR | MR | Zbl | MR

[3] L. Henderson, N. Linden, S. Popescu, Phys. Rev. Lett., 87 (2001), 237901 | DOI

[4] J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton Univ. Press, Princeton, 1944 ; R. D. Luice, H. Raiffa, Games and Decisions, Wiley, N.Y., 1957 | MR | Zbl | MR

[5] J. Summhammer, Found. Phys. Lett., 1 (1988), 113 ; Int. J. Theor. Phys., 33 (1994), 171 | DOI | DOI | MR

[6] A. Peres, Quantum Theory: Concepts and Methods, Kluwer, Dordrecht, 1993 ; C. M. Caves, C. A. Fuchs, R. Schack, Phys. Rev. A, 65 (2002), 022305 ; C. A. Fuchs, J. Mod. Opt., 50 (2003), 987 ; A. M. Gleason, J. Math. Mech., 6 (1957), 885 ; P. Busch, Phys. Rev. Lett., 91 (2003), 120403 | MR | Zbl | DOI | MR | DOI | MR | Zbl | MR | Zbl | DOI | MR

[7] B. R. Frieden, Physics from Fisher Information: A Unification, Camb. Univ. Press, Cambridge, 1998 | MR

[8] N. D. Mermin, Pramana, 51 (1998), 549 ; ; Am. J. Phys., 66 (1998), 753 E-print quant-ph/960913 | DOI | DOI

[9] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Camb. Univ. Press, Cambridge, 2000 | MR

[10] L. Henderson, V. Vedral, J. Phys. A, 34 (2001), 6899 ; Phys. Rev. Lett., 84 (2000), 2263 ; V. Vedral, Phys. Rev. Lett., 90 (2003), 050401 ; H. Ollivier, W. H. Zurek, Phys. Rev. Lett., 88 (2002), 017901 ; W. H. Zurek, Phys. Rev. A, 67 (2003), 012320 | DOI | MR | Zbl | DOI | DOI | MR | DOI | Zbl | DOI

[11] R. A. Fisher, Proc. Camb. Phil. Soc., 22 (1925), 700 | DOI | Zbl

[12] S. L. Luo, Phys. Rev. Lett., 91 (2003), 180403 | DOI

[13] E. P. Wigner, M. M. Yanase, Proc. Nat. Acad. Sci. USA, 49 (1963), 910 | DOI | MR | Zbl

[14] E. P. Wigner, Z. Phys., 133 (1952), 101 ; H. Araki, M. M. Yanase, Phys. Rev., 120 (1960), 622 ; M. M. Yanase, Phys. Rev., 123 (1961), 666 | DOI | MR | Zbl | DOI | MR | Zbl | DOI

[15] E. H. Lieb, Adv. Math., 11 (1973), 267 ; A. Wehrl, Rev. Mod. Phys., 50 (1978), 221 | DOI | MR | Zbl | DOI | MR

[16] E. Schrödinger, Sitzungsberg Preuss. Acad. Wiss. Berlin (Phys. Math.), 19 (1930), 296; A. Angelow, M.-C. Batoni, transl. and annot.: E. Schrödinger, About Heisenberg uncertainty relation; E-print quant-ph/9903100

[17] J. Wheeler, “Information physics, quantum: the search for links”, Complexity, Entropy, and Physics of Information, ed. W. H. Zurek, Addison-Wesley, Reading, MA, 1990, 3 | MR

[18] A. Zeilinger, Found. Phys., 29 (1999), 631 | DOI | MR

[19] S. L. Luo, Found. Phys., 32 (2002), 1757 | DOI | MR