Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 211-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate large-order asymptotic terms in the perturbation theory for the $O(n)$ symmetric $\phi^4(4-\epsilon)$-model in the minimal subtraction scheme. Taking the specificity of the $(4-\epsilon)$-minimal-subtraction scheme into account, we calculate corrections to the asymptotic formula for the expansion coefficients of the renormalization constant $Z_g$ and the critical index $\eta$. The resulting corrections essentially improve the asymptotic description of the results in loop calculations.
Keywords: large-order asymptotic terms, instanton, $\phi^4$-model, renormalization constants, minimal subtraction scheme, $(4-\epsilon)$-expansion.
@article{TMF_2005_143_2_a2,
     author = {M. V. Komarova and M. Yu. Nalimov},
     title = {Large-order asymptotic terms in perturbation theory: {The} first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--230},
     year = {2005},
     volume = {143},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a2/}
}
TY  - JOUR
AU  - M. V. Komarova
AU  - M. Yu. Nalimov
TI  - Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 211
EP  - 230
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a2/
LA  - ru
ID  - TMF_2005_143_2_a2
ER  - 
%0 Journal Article
%A M. V. Komarova
%A M. Yu. Nalimov
%T Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 211-230
%V 143
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a2/
%G ru
%F TMF_2005_143_2_a2
M. V. Komarova; M. Yu. Nalimov. Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 211-230. http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a2/

[1] L. N. Lipatov, ZhETF, 72 (1977), 411 | MR

[2] E. Brézin, J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. D, 15 (1977), 1544 | DOI

[3] M. V. Komarova, M. Yu. Nalimov, TMF, 126 (2001), 409 | DOI | MR | Zbl

[4] Yu. A. Kubyshin, TMF, 57 (1983), 363 | MR

[5] A. G. Ushveridze, Yadernaya fizika, 38 (1983), 798 | MR

[6] J. Honkonen, M. Nalimov, Phys. Lett. B, 459 (1999), 582 | DOI

[7] J. Honkonen, M. Komarova, M. Nalimov, Acta Physica Slovaca, 52 (2002), 303

[8] I. M. Suslov, ZhETF, 111 (1997), 220

[9] M. V. Komarova, M. Yu. Nalimov, TMF, 129 (2001), 387 | DOI | MR | Zbl

[10] V. G. Makhankov, Phys. Lett. A, 61 (1977), 431 | DOI

[11] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, S-Pb., 1998

[12] A. J. McKane, D. J. Wallace, J. Phys. A, 11 (1978), 2285 | DOI | MR