Two classes of generalized functions used in nonlocal field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 195-210

Voir la notice de l'article provenant de la source Math-Net.Ru

We elucidate the relation between the two ways of formulating causality in nonlocal quantum field theory: using analytic test functions belonging to the space $S^0$ (which is the Fourier transform of the Schwartz space $\mathcal D$) and using test functions in the Gelfand–Shilov spaces $S^0_\alpha$. We prove that every functional defined on $S^0$ has the same carrier cones as its restrictions to the smaller spaces $S^0_\alpha$. As an application of this result, we derive a Paley–Wiener–Schwartz-type theorem for arbitrarily singular generalized functions of tempered growth and obtain the corresponding extension of Vladimirovs algebra of functions holomorphic in a tubular domain.
Keywords: nonlocal quantum fields, causality, Wightman functions, analytic functionals, Hörmanders estimates, Paley–Wiener–Schwartz-type theorems.
@article{TMF_2005_143_2_a1,
     author = {M. A. Soloviev},
     title = {Two classes of generalized functions used in nonlocal field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {195--210},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Two classes of generalized functions used in nonlocal field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 195
EP  - 210
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/
LA  - ru
ID  - TMF_2005_143_2_a1
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Two classes of generalized functions used in nonlocal field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 195-210
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/
%G ru
%F TMF_2005_143_2_a1
M. A. Soloviev. Two classes of generalized functions used in nonlocal field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 195-210. http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/