Two classes of generalized functions used in nonlocal field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 195-210
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We elucidate the relation between the two ways of formulating causality in nonlocal quantum field theory: using analytic test functions belonging to the space $S^0$ (which is the Fourier transform of the Schwartz space $\mathcal D$) and using test functions in the Gelfand–Shilov spaces $S^0_\alpha$. We prove that every functional defined on $S^0$ has the same carrier cones as its restrictions to the smaller spaces $S^0_\alpha$. As an application of this result, we derive a Paley–Wiener–Schwartz-type theorem for arbitrarily singular generalized functions of tempered growth and obtain the corresponding extension of Vladimirovs algebra of functions holomorphic in a tubular domain.
Keywords: nonlocal quantum fields, causality, Wightman functions, analytic functionals, Paley–Wiener–Schwartz-type theorems.
Mots-clés : Hörmanders estimates
@article{TMF_2005_143_2_a1,
     author = {M. A. Soloviev},
     title = {Two classes of generalized functions used in nonlocal field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {195--210},
     year = {2005},
     volume = {143},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Two classes of generalized functions used in nonlocal field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 195
EP  - 210
VL  - 143
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/
LA  - ru
ID  - TMF_2005_143_2_a1
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Two classes of generalized functions used in nonlocal field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 195-210
%V 143
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/
%G ru
%F TMF_2005_143_2_a1
M. A. Soloviev. Two classes of generalized functions used in nonlocal field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 2, pp. 195-210. http://geodesic.mathdoc.fr/item/TMF_2005_143_2_a1/

[1] M. A. Solovev, TMF, 121 (1999), 139 | DOI | Zbl

[2] G. V. Efimov, Problemy kvantovoi teorii nelokalnykh vzaimodeistvii, Nauka, M., 1985 | MR | Zbl

[3] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, T. 2, Fizmatgiz, M., 1958 | MR | Zbl

[4] R. Striter, A. Vaitman, $PCT$, spin i statistika i vse takoe, Nauka, M., 1966

[5] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[6] M. A. Soloviev, Lett. Math. Phys., 33 (1995), 49 | DOI | MR | Zbl

[7] O. Steinmann, Commun. Math. Phys., 18 (1970), 179 | DOI | MR | Zbl

[8] W. Lücke, J. Math. Phys., 27 (1986), 1901 | DOI | MR

[9] A. Vaitman, Problemy v relyativistskoi dinamike kvantovykh polei, Nauka, M., 1968 | MR

[10] M. A. Soloviev, J. Math. Phys., 39 (1998), 2635 | DOI | MR | Zbl

[11] H. Komatsu, J. Math. Soc. Japan, 19 (1967), 366 | DOI | MR | Zbl

[12] M. A. Soloviev, Commun. Math. Phys., 184 (1997), 579 | DOI | MR | Zbl

[13] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 2, Mir, M., 1986 | MR

[14] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[15] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[16] M. A. Solovev, TMF, 128 (2001), 492 | DOI | Zbl

[17] A. Grothendieck, Mem. Am. Math. Soc., 16, 1955, 1 | MR

[18] A. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[19] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986 | MR

[20] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[21] V. P. Palamodov, UMN, 26 (1971), 3 | MR | Zbl

[22] M. A. Solovev, TMF, 52 (1982), 363

[23] C. Roumieu, Ann. Sci. École Norm. Sup., 77 (1960), 41 | DOI | MR | Zbl

[24] M. A. Soloviev, J. Math. Phys., 45 (2004), 1944 | DOI | MR | Zbl