Multiparticle correlations, entropy of partial distributions, and the direct variational method
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 150-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the classical statistical theory, multiparticle correlations are governed by a variational principle for a functional that becomes the thermodynamic potential on its extremal. We show that this functional contains a part that has the meaning of a sum of contributions from multiparticle entropies. We present a method for passing from the conditional variational problem for the thermodynamic potential to an unconditional one.
Keywords: partial distributions, irreducible contributions, connected diagrams, entropy, direct correlations, total correlations, direct variational principle.
@article{TMF_2005_143_1_a9,
     author = {\'E. A. Arinstein},
     title = {Multiparticle correlations, entropy of partial distributions, and the direct variational method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {150--160},
     year = {2005},
     volume = {143},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a9/}
}
TY  - JOUR
AU  - É. A. Arinstein
TI  - Multiparticle correlations, entropy of partial distributions, and the direct variational method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 150
EP  - 160
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a9/
LA  - ru
ID  - TMF_2005_143_1_a9
ER  - 
%0 Journal Article
%A É. A. Arinstein
%T Multiparticle correlations, entropy of partial distributions, and the direct variational method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 150-160
%V 143
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a9/
%G ru
%F TMF_2005_143_1_a9
É. A. Arinstein. Multiparticle correlations, entropy of partial distributions, and the direct variational method. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 150-160. http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a9/

[1] E. A. Arinshtein, TMF, 124:1 (2000), 136–147 | DOI | MR | Zbl

[2] E. A. Arinshtein, R. M. Ganopolskii, TMF, 131:2 (2002), 278–287 | DOI | MR | Zbl

[3] E. A. Arinshtein, TMF, 141:1 (2004), 152–160 | DOI | MR | Zbl