Multiparticle correlations, entropy of partial distributions, and the direct variational method
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 150-160
Cet article a éte moissonné depuis la source Math-Net.Ru
In the classical statistical theory, multiparticle correlations are governed by a variational principle for a functional that becomes the thermodynamic potential on its extremal. We show that this functional contains a part that has the meaning of a sum of contributions from multiparticle entropies. We present a method for passing from the conditional variational problem for the thermodynamic potential to an unconditional one.
Keywords:
partial distributions, irreducible contributions, connected diagrams, entropy, direct correlations, total correlations, direct variational principle.
@article{TMF_2005_143_1_a9,
author = {\'E. A. Arinstein},
title = {Multiparticle correlations, entropy of partial distributions, and the direct variational method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {150--160},
year = {2005},
volume = {143},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a9/}
}
TY - JOUR AU - É. A. Arinstein TI - Multiparticle correlations, entropy of partial distributions, and the direct variational method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 150 EP - 160 VL - 143 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a9/ LA - ru ID - TMF_2005_143_1_a9 ER -
É. A. Arinstein. Multiparticle correlations, entropy of partial distributions, and the direct variational method. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 150-160. http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a9/