Exact solutions and mixing in an algebraic dynamical system
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 131-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal A$ be an $n\times n$ matrix with entries $a_{ij}$ in the field $\mathbb C$. We consider two involutive operations on these matrices: the matrix inverse $I\colon\mathcal A\mapsto\mathcal A^{-1}$ and the entry-wise or Hadamard inverse $J\colon a_{ij}\mapsto a_{ij}^{-1}$. We study the algebraic dynamical system generated by iterations of the product $J\circ I$. We construct the complete solution of this system for $n\le4$. For $n=4$, it is obtained using an ansatz in theta functions. For $n\ge 5$, the same ansatz gives partial solutions. They are described by integer linear transformations of the product of two identical complex tori. As a result, we obtain a dynamical system with mixing described by explicit formulas.
Keywords: algebraic dynamical systems, mixing, star-triangle relation symmetries.
Mots-clés : exact solutions
@article{TMF_2005_143_1_a8,
     author = {I. G. Korepanov},
     title = {Exact solutions and mixing in an algebraic dynamical system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {131--149},
     year = {2005},
     volume = {143},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a8/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Exact solutions and mixing in an algebraic dynamical system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 131
EP  - 149
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a8/
LA  - ru
ID  - TMF_2005_143_1_a8
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Exact solutions and mixing in an algebraic dynamical system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 131-149
%V 143
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a8/
%G ru
%F TMF_2005_143_1_a8
I. G. Korepanov. Exact solutions and mixing in an algebraic dynamical system. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 131-149. http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a8/

[1] I. G. Korepanov, Algebraic integrable dynamical systems, $2+1$-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics, E-print solv-int/9506003

[2] M. P. Bellon, J.-M. Maillard, C.-M. Viallet, Phys. Lett. A, 159 (1991), 221–232 | DOI | MR

[3] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985, s. 488 | MR

[4] M. P. Bellon, J.-M. Maillard, C.-M. Viallet, Phys. Rev. Lett., 67 (1991), 1373–1376 ; E-print hep-th/9112067 | DOI | MR | Zbl

[5] J.-Ch. Anglès d'Auriac, J.-M. Maillard, C. M. Viallet, A classification of four-state spin edge Potts models, E-print cond-mat/0209557 | MR

[6] I. G. Korepanov, Exact solution for a matrix dynamical system with usual and Hadamard inverses, E-print nlin.SI/0303007

[7] J. M. Landsberg, On an unusual conjecture of Kontsevich and variants of Castelnuovo's lemma, E-print alg-geom/9604023 | MR

[8] N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 567 [FS] (2000), 554–582 | DOI | MR | Zbl