Truncations of Toda chains and the reduction problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 33-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the generalized Toda chains corresponding to simple Lie algebras of type $D$ are reductions of chains corresponding to Lie algebras of type $A$.
Keywords: generalized Toda chains, Darboux integrability
Mots-clés : Laplace invariants, Lax pair, simple Lie algebras.
@article{TMF_2005_143_1_a3,
     author = {I. T. Habibullin},
     title = {Truncations of {Toda} chains and the reduction problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {33--48},
     year = {2005},
     volume = {143},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a3/}
}
TY  - JOUR
AU  - I. T. Habibullin
TI  - Truncations of Toda chains and the reduction problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 33
EP  - 48
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a3/
LA  - ru
ID  - TMF_2005_143_1_a3
ER  - 
%0 Journal Article
%A I. T. Habibullin
%T Truncations of Toda chains and the reduction problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 33-48
%V 143
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a3/
%G ru
%F TMF_2005_143_1_a3
I. T. Habibullin. Truncations of Toda chains and the reduction problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 143 (2005) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/TMF_2005_143_1_a3/

[1] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981

[2] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[3] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[4] S. P. Tsarev, TMF, 122:1 (2000), 144–160 | DOI | MR | Zbl

[5] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, V. 2, Gautier-Villars, Paris, 1915 | MR

[6] E. K. Sklyanin, Funkts. analiz i ego prilozh., 21:2 (1987), 86–87 | MR | Zbl

[7] I. T. Habibullin, Phys. Lett. A, 178 (1993), 369–375 | DOI | MR

[8] I. M. Anderson, N. Kamran, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[9] A. V. Zhiber, V. V. Sokolov, UMN, 56:1(337) (2001), 63–106 | DOI | MR | Zbl

[10] I. T. Khabibullin, E. V. Gudkova, Funkts. analiz i ego prilozh., 38:2 (2004), 71–83 | DOI | MR | Zbl

[11] E. Goursat, Amer. J. Math., 18 (1896), 347–385 | DOI | MR | Zbl