Boundary integrability of nonlinear sigma models
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 322-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe recent work on the classical integrability of the principal chiral model and general sigma models with boundaries in (compact) symmetric spaces.
Keywords: integrable field theory, sigma models, integrability of theories with boundaries.
@article{TMF_2005_142_2_a9,
     author = {N. J. MacKay},
     title = {Boundary integrability of nonlinear sigma models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {322--328},
     year = {2005},
     volume = {142},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a9/}
}
TY  - JOUR
AU  - N. J. MacKay
TI  - Boundary integrability of nonlinear sigma models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 322
EP  - 328
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a9/
LA  - ru
ID  - TMF_2005_142_2_a9
ER  - 
%0 Journal Article
%A N. J. MacKay
%T Boundary integrability of nonlinear sigma models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 322-328
%V 142
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a9/
%G ru
%F TMF_2005_142_2_a9
N. J. MacKay. Boundary integrability of nonlinear sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 322-328. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a9/

[1] I. V. Cherednik, TMF, 61:1 (1984), 35 ; S. Ghoshal, A. Zamolodchikov, Int. J. Mod. Phys. A, 9 (1994), 3841 ; Erratum, 9, 4353 ; E-print hep-th/9306002 | MR | Zbl | DOI | MR | Zbl | DOI | MR

[2] E. Corrigan, Reflections, ; “Integrable field theory with boundary conditions”, Frontiers in Quantum Field Theory, eds. Chao-Zheng Zha, Ke Wu, World Scientific, Singapore, 1998, 9 ; E-print hep-th/9601055E-print hep-th/9612138 | MR | Zbl

[3] E. Corrigan, Z.-M. Sheng, Int. J. Mod. Phys. A, 12 (1997), 2825 ; E-print hep-th/9612150 | DOI | MR | Zbl

[4] S. Ghoshal, Phys. Lett. B, 334 (1994), 363 ; E-print hep-th/9401008 | DOI | MR

[5] M. Moriconi, Nucl. Phys. B, 619 (2001), 396 ; ; “Integrable boundary conditions for the $O(N)$ nonlinear sigma model”, Statistical Field Theories, Proc. of the NATO Adv. Res. Working. Part II (Como, Italy, 18–23 June, 2001), NATO Sci. Ser. II. Math. Phys. Chem., 73, eds. A. Capelli, G. Mussardo, Kluwer, Dordrecht, 2002 ; E-print hep-th/0108039E-print hep-th/0111195 | DOI | MR | Zbl | MR

[6] W. He, L. Zhao, Phys. Lett. B, 570 (2003), 251 ; E-print hep-th/0307002 | DOI | MR | Zbl

[7] N. MacKay, B. Short, Commun. Math. Phys., 233 (2003), 313 ; Erratum, 245 (2004), 401 ; E-print hep-th/0104212 | DOI | MR | Zbl | DOI | MR

[8] G. Delius, N. MacKay, B. Short, Phys. Lett. B, 522 (2001), 335 ; Erratum, 524 (2002), 401 ; E-print hep-th/0109115 | DOI | MR | Zbl | DOI | MR

[9] N. MacKay, C. A. S. Young, Phys. Lett. B, 588 (2004), 221 ; E-print hep-th/0402182 | DOI | MR | Zbl

[10] H. Eichenherr, Nucl. Phys. B, 164 (1980), 528 ; 282 (1987), 745 ; J.-P. Antoine, B. Piette, J. Math. Phys., 28 (1987), 2753 | DOI | MR | DOI | MR | DOI | MR | Zbl

[11] J. M. Evans, M. Hassan, N. J. MacKay, A. Mountain, Nucl. Phys. B, 561 (1999), 385 ; E-print hep-th/9902008 | DOI | MR | Zbl

[12] J. M. Evans, A. J. Mountain, Phys. Lett. B, 483 (2000), 290 ; E-print hep-th/0003264 | DOI | MR | Zbl

[13] N. MacKay, J. Phys. A, 35 (2002), 7865 ; E-print math.QA/0205155 | DOI | MR | Zbl

[14] P. Goddard, W. Nahm, D. Olive, Phys. Lett. B, 160 (1985), 111 ; C. Daboul, J. Math. Phys., 37 (1996), 3576 ; E-print hep-th/9604108 | DOI | MR | Zbl | DOI | MR | Zbl

[15] A. Molev, M. Nazarov, G. Olshanskii, UMN, 51:2 (1996), 27 | DOI | MR | Zbl

[16] H. Eichenherr, M. Forger, Nucl. Phys. B, 155 (1978), 381 | DOI | MR

[17] M. Forger, J. Laartz, U. Schaeper, Commun. Math. Phys., 146 (1992), 397 ; E-print hep-th/9201025 | DOI | MR | Zbl

[18] Y. Y. Goldschmidt, E. Witten, Phys. Lett. B, 91 (1980), 392 | DOI | MR

[19] E. Abdalla, M. C. B. Abdalla, Phys. Rev. D, 23 (1981), 1800 ; E. Abdalla, M. Gomes, M. Forger, Nucl. Phys. B, 210 (1982), 181 | DOI | DOI

[20] J. M. Evans, Nucl. Phys. B, 608 (2001), 591 ; E-print hep-th/0101231 | DOI | MR | Zbl

[21] J. M. Evans, M. Hassan, N. J. MacKay, A. J. Mountain, Conserved charges and supersymmetry in principal chiral models, E-print hep-th/9711140

[22] D. Bernard, Commun. Math. Phys., 137 (1991), 191 | DOI | MR | Zbl

[23] E. Ogievetsky, N. Reshetikhin, P. Wiegmann, Nucl. Phys. B, 280 (1987), 45 ; E. Ogievetsky, P. Wiegmann, Phys. Lett. B, 168 (1986), 360 | DOI | MR | DOI | MR

[24] P. Fendley, Phys. Rev. B, 63 (2001), 104429 ; ; JHEP, 0105 (2001), 050 ; Integrable sigma models and perturbed coset models, ; A. Babichenko, Phys. Lett. B, 554 (2003), 96 ; E-print cond-mat/0008372E-print hep-th/0101034E-print hep-th/0211114 | DOI | DOI | MR | DOI | MR | Zbl | MR

[25] P. E. Dorey, Nucl. Phys. B, 358 (1991), 654 | DOI | MR