Baxter $Q$-operators for the integrable discrete self-trapping chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 310-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the integrable discrete self-trapping chain, we construct Baxter $Q$-operators as the traces of the monodromy of certain $M$-operators that act in the quantum and auxiliary spaces. With this procedure, we obtain two basic $M$-operators and derive some functional relations between them such as intertwining relations and Wronskian-type relations between two basic $Q$-operators.
Keywords: integrable chains, algebraic Bethe ansatz, functional equations.
@article{TMF_2005_142_2_a8,
     author = {A. E. Kovalsky and G. P. Pron'ko},
     title = {Baxter $Q$-operators for the integrable discrete self-trapping chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {310--321},
     year = {2005},
     volume = {142},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a8/}
}
TY  - JOUR
AU  - A. E. Kovalsky
AU  - G. P. Pron'ko
TI  - Baxter $Q$-operators for the integrable discrete self-trapping chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 310
EP  - 321
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a8/
LA  - ru
ID  - TMF_2005_142_2_a8
ER  - 
%0 Journal Article
%A A. E. Kovalsky
%A G. P. Pron'ko
%T Baxter $Q$-operators for the integrable discrete self-trapping chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 310-321
%V 142
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a8/
%G ru
%F TMF_2005_142_2_a8
A. E. Kovalsky; G. P. Pron'ko. Baxter $Q$-operators for the integrable discrete self-trapping chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 310-321. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a8/

[1] A. C. Scott, J. C. Eilbeck, Phys. Lett. A, 119 (1986), 60–64 | DOI | MR

[2] V. Z. Enolskii, M. Salerno, N. A. Kostov, A. C. Scott, Physica Scripta, 43 (1991), 229–235 | DOI | MR | Zbl

[3] V. B. Kuznetsov, M. Salerno, E. K. Sklyanin, J. Phys. A, 33 (2000), 171–189 | DOI | MR | Zbl

[4] L. D. Faddeev, “How algebraic Bethe Anzatz works for intergable models”, Quantum Symmetries/Symmetries Quantiques, Proc. of the Les Houches Summer School, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedski, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149 ; E-print hep-th/9605187 | MR | Zbl

[5] R. J. Baxter, Stud. Appl. Math., 1971, L51–L69 ; Ann. Phys. N Y, 70 (1972), 193–228 ; 76 (1973), 1–71 | MR | DOI | MR | Zbl | DOI

[6] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, Commun. Math. Phys., 190 (1997), 247–78 ; 200 (1998), 297–324 | DOI | MR | DOI | MR

[7] G. P. Pronko, Yu. G. Stroganov, J. Phys. A, 32 (1999), 2333–2340 ; E-print hep-th/9808153 | DOI | MR | Zbl

[8] G. P. Pronko, J. Phys. A33, 33 (2000), 8251–8266 ; E-print nlin.SI/0003002 | DOI | MR | Zbl

[9] V. V. Bazhanov, Yu. G. Stroganov, J. Statist. Phys., 59 (1990), 799–817 | DOI | MR | Zbl

[10] V. Pasquer, M. Gaudin, J. Phys. A, 25 (1992), 5243–5252 | DOI | MR

[11] S. E. Derkachov, J. Phys. A, 32 (1999), 5299–5316 ; E-print solv-int/9902015 | DOI | MR | Zbl