@article{TMF_2005_142_2_a6,
author = {A. V. Razumov and Yu. G. Stroganov},
title = {$O(1)$ loop model with different boundary conditions and symmetry classes of alternating-sign matrices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {284--292},
year = {2005},
volume = {142},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a6/}
}
TY - JOUR AU - A. V. Razumov AU - Yu. G. Stroganov TI - $O(1)$ loop model with different boundary conditions and symmetry classes of alternating-sign matrices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 284 EP - 292 VL - 142 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a6/ LA - ru ID - TMF_2005_142_2_a6 ER -
%0 Journal Article %A A. V. Razumov %A Yu. G. Stroganov %T $O(1)$ loop model with different boundary conditions and symmetry classes of alternating-sign matrices %J Teoretičeskaâ i matematičeskaâ fizika %D 2005 %P 284-292 %V 142 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a6/ %G ru %F TMF_2005_142_2_a6
A. V. Razumov; Yu. G. Stroganov. $O(1)$ loop model with different boundary conditions and symmetry classes of alternating-sign matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 284-292. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a6/
[1] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 3185–3190 ; E-print cond-mat/0012141 | DOI | MR | Zbl
[2] M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34 (2001), L265–L270 ; E-print cond-mat/0101385 | DOI | MR | Zbl
[3] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 5335–5340 ; E-print cond-mat/0102247 | DOI | MR | Zbl
[4] A. V. Razumov, Yu. G. Stroganov, TMF, 138 (2004), 395–400 ; E-print math.CO/0104216 | DOI | MR | Zbl
[5] H. W. J. Blöte, B. Nienhuis, J. Phys. A, 22 (1989), 1415–1438 | DOI | MR
[6] J. Propp, Discrete Math. Theor. Comput. Sci. (Proc.), AA (2001), 43–58 | MR | Zbl
[7] D. P. Robbins, Symmetry classes of alternating sign matrices, E-print math.CO/0008045
[8] G. Kuperberg, Ann. Math., 156 (2002), 835–866 ; E-print math.CO/0008184 | DOI | MR
[9] P. A. Pearce, V. Rittenberg, J. de Gier, Critical $Q=1$ Potts model and Temperley–Lieb stochastic processes, E-print cond-mat/0108051