Quantum inverse scattering method and (super)conformal field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 252-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the possibility of using the quantum inverse scattering method to study the superconformal field theory and its integrable perturbations. The classical limit of the considered constructions is based on the $\widehat{osp}(1|2)$ super-KdV hierarchy. We introduce the quantum counterpart of the monodromy matrix corresponding to the linear problem associated with the L-operator and use the explicit form of the irreducible representations of $\widehat{osp}_q(1|2)$ to obtain the “fusion relations” for the transfer matrices (i.e., the traces of the monodromy matrices in different representations).
Keywords: superconformal field theory, supersymmetric Korteweg–de Vries equation.
@article{TMF_2005_142_2_a4,
     author = {P. P. Kulish and A. M. Zeitlin},
     title = {Quantum inverse scattering method and (super)conformal field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--264},
     year = {2005},
     volume = {142},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - A. M. Zeitlin
TI  - Quantum inverse scattering method and (super)conformal field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 252
EP  - 264
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/
LA  - ru
ID  - TMF_2005_142_2_a4
ER  - 
%0 Journal Article
%A P. P. Kulish
%A A. M. Zeitlin
%T Quantum inverse scattering method and (super)conformal field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 252-264
%V 142
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/
%G ru
%F TMF_2005_142_2_a4
P. P. Kulish; A. M. Zeitlin. Quantum inverse scattering method and (super)conformal field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 252-264. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/

[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40 (1979), 194 | MR

[2] C. S. Gardner, J. M. Green, S. M. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI | Zbl

[3] H. Bethe, Z. Phys., 71 (1931), 205 ; Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, М., 1985 | DOI | Zbl | MR

[4] P. D. Lax, Commun. Pure Appl. Math., 21 (1968), 467 | DOI | MR | Zbl

[5] V. E. Zakharov, L. D. Faddeev, Funkts. analiz i ego prilozh., 5 (1968), 18

[6] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[7] L. D. Faddeev, “How Bethe ansatz works for integrable models”, Quantum Symmetries/Symétries Quantiques, Proc. of the Les Houches summer school, session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149 ; E-print hep-th/9605187 | MR | Zbl

[8] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable Quantum Fields Theories, Proc. of the Symp. (Tvaersminne, Finland, 23–27 March, 1981), Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin, 1982, 61 | DOI | MR

[9] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, Commun. Math. Phys., 177 (1996), 381 ; E-print hep-th/9412229 | DOI | MR | Zbl | MR

[10] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, Commun. Math. Phys., 190 (1997), 247 ; ; 200, 1999 ; ; V. V. Bazhanov, A. N. Hibberd, S. M. Khoroshkin, Nucl. Phys. B, 622 (2002), 475 E-print hep-th/9604044E-print hep-th/9805008 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[11] D. Fioravanti, F. Ravanini, M. Stanishkov, Phys. Lett. B, 367 (1996), 113 ; E-print hep-th/9510047 | DOI | MR | Zbl

[12] A. K. Pogrebkov, UMN, 58:5 (2003), 164 | DOI | MR

[13] B. A. Kupershmidt, Phys. Lett. A, 102 (1984), 213 ; П. П. Кулиш, Зап. научн. семин. ЛОМИ, 155, 1986, 142 ; P. Mathieu, Phys. Lett. B, 218 (1989), 185 ; П. П. Кулиш, А. М. Цейтлин, Зап. научн. семин. ПОМИ, 291, 2002, 185 ; E-print hep-th/0312158 | DOI | MR | DOI | MR | Zbl

[14] P. P. Kulish, A. M. Zeitlin, Phys. Lett. B, 581 (2004), 125 | DOI | MR | Zbl

[15] A. M. Polyakov, Pisma v ZhETF, 12 (1970), 538

[16] A. B. Zamolodchikov, “Integrable field theory from conformal field theory”, Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Stud. Pure Math., 19, eds. M. Jimbo, T. Miwa, A. Tsuchiya, Acad. Press, Boston, MA; Kinokuniya, Tokyo, 1989, 641 | MR

[17] M. A. Bershadsky, V. G. Knizhnik, M. G. Teitelman, Phys. Lett. B, 151 (1985), 31 | DOI | MR

[18] F. Jimenez, Phys. Lett. B, 252 (1990), 577 | DOI | MR

[19] Al. B. Zamolodchikov, Phys. Lett. B, 253 (1991), 391 | DOI | MR

[20] M. Scheunert, W. Nahm, V. Rittenberg, J. Math. Phys., 18 (1977), 155 ; F. A. Berezin, V. N. Tolstoy, Commun. Math. Phys., 78 (1981), 409 | DOI | MR | Zbl | DOI | MR | Zbl

[21] J. Lukierski, V. N. Tolstoy, Cartan–Weyl basis for quantum affine superalgebra $\,\widehat{\!osp}_q(1|2)$, E-print hep-th/9710030 | MR

[22] P. P. Kulish, N. Manojlovic, J. Math. Phys., 44 (2003), 676 ; E-print nlin.SI/0204037 | DOI | MR | Zbl

[23] P. P. Kulish, A. M. Zeitlin, Phys. Lett. B, 597 (2004), 229 ; E-print hep-th/0407154 | DOI | MR | Zbl

[24] P. P. Kulish, A. M. Zeitlin, “Superconformal field theory and SUSY $N=1$ KdV hierarchy. II: The $Q$-operator”, Nucl. Phys. B, 2005 (to appear) ; E-print hep-th/0501019 | MR

[25] A. M. Zeitlin, “Integrability of superconformal field theory and SUSY $N=1$ KdV”, String Theory: From Gauge Interactions to Cosmology, Proc. of Cargese Summer School 2004, NATO Science Series C, 2005 (to appear) ; E-print hep-th/0501150 | Zbl