Quantum inverse scattering method and (super)conformal field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 252-264

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the possibility of using the quantum inverse scattering method to study the superconformal field theory and its integrable perturbations. The classical limit of the considered constructions is based on the $\widehat{osp}(1|2)$ super-KdV hierarchy. We introduce the quantum counterpart of the monodromy matrix corresponding to the linear problem associated with the L-operator and use the explicit form of the irreducible representations of $\widehat{osp}_q(1|2)$ to obtain the “fusion relations” for the transfer matrices (i.e., the traces of the monodromy matrices in different representations).
Keywords: superconformal field theory, supersymmetric Korteweg–de Vries equation.
@article{TMF_2005_142_2_a4,
     author = {P. P. Kulish and A. M. Zeitlin},
     title = {Quantum inverse scattering method and (super)conformal field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--264},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - A. M. Zeitlin
TI  - Quantum inverse scattering method and (super)conformal field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 252
EP  - 264
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/
LA  - ru
ID  - TMF_2005_142_2_a4
ER  - 
%0 Journal Article
%A P. P. Kulish
%A A. M. Zeitlin
%T Quantum inverse scattering method and (super)conformal field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 252-264
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/
%G ru
%F TMF_2005_142_2_a4
P. P. Kulish; A. M. Zeitlin. Quantum inverse scattering method and (super)conformal field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 252-264. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a4/