Three-point function in the minimal Liouville gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 218-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We revisit the problem of the structure constants of the operator product expansions in the minimal models of conformal field theory, rederiving these previously known constants and presenting them in a form particularly useful in Liouville gravity applications. We discuss the analytic relation between our expression and the structure constant in the Liouville field theory and also give the three- and two-point correlation numbers on the sphere in the minimal Liouville gravity in the general form.
Keywords: conformal field theory, Liouville gravity, minimal models.
@article{TMF_2005_142_2_a2,
     author = {Al. B. Zamolodchikov},
     title = {Three-point function in the minimal {Liouville} gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--234},
     year = {2005},
     volume = {142},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a2/}
}
TY  - JOUR
AU  - Al. B. Zamolodchikov
TI  - Three-point function in the minimal Liouville gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 218
EP  - 234
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a2/
LA  - ru
ID  - TMF_2005_142_2_a2
ER  - 
%0 Journal Article
%A Al. B. Zamolodchikov
%T Three-point function in the minimal Liouville gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 218-234
%V 142
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a2/
%G ru
%F TMF_2005_142_2_a2
Al. B. Zamolodchikov. Three-point function in the minimal Liouville gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 218-234. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a2/

[1] A. Polyakov, Phys. Lett. B, 103 (1981), 207 | DOI | MR

[2] J. Distler, H. Kawai, Nucl. Phys. B, 231 (1989), 509 ; F. David, Mod. Phys. Lett. A, 3 (1988), 1651 | DOI | MR | DOI | MR

[3] I. R. Klebanov, String theory in two dimensions, ; P. Ginsparg, G. Moore, Lectures on 2D gravity and 2D string theory, TASI summer school, 1992; ; P. Di Francesco, P. Ginsparg, J. Zinn-Justin, Phys. Rep., 254 (1995), 1 E-print hep-th/9108019E-print hep-th/9304011 | MR | DOI | MR

[4] V. Knizhnik, A. Polyakov, A. Zamolodchikov, Mod. Phys. Lett. A, 3 (1988), 819 | DOI | MR

[5] A. Belavin, A. Polyakov, A. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl

[6] H. Dorn, H.-J. Otto, Phys. Lett. B, 291 (1992), 39 ; ; Nucl. Phys. B, 429 (1994), 375 ; E-print hep-th/9206053E-print hep-th/9403141 | DOI | MR | DOI | MR | Zbl

[7] A. B. Zamolodchikov, Al. B. Zamolodchikov, Nucl. Phys. B, 477 (1996), 577 ; E-print hep-th/9506136 | DOI | MR | Zbl

[8] E. W. Barnes, Proc. London. Math. Soc., 31 (1899), 358 ; Phil. Trans. Roy. Soc. A, 196 (1901), 265 | DOI | Zbl | DOI | Zbl

[9] J. Teschner, Phys. Lett. B, 363 (1995), 65 ; E-print hep-th/9507109 | DOI

[10] V. G. Kac, Infinite Dimensional Lie Algebras. An Introduction, Progr. Math., 44, Birkhäuser, Boston, MA, 1983 | MR | Zbl

[11] V. Dotsenko, V. Fateev, Nucl. Phys. B, 251 (1985), 691 | DOI | MR

[12] P. Di Francesco, D. Kutasov, Nucl. Phys. B, 342 (1990), 589 | DOI | MR

[13] M. Goulian, M. Li, Phys. Rev. Lett. B, 264 (1991), 292 | DOI | MR