Quasigraded lie algebras, Kostant--Adler scheme, and integrable hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 329-345
Voir la notice de l'article provenant de la source Math-Net.Ru
Using special “anisotropic” quasigraded Lie algebras, we obtain a number of new hierarchies of integrable nonlinear equations in partial derivatives admitting zero-curvature representations. Among them are an anisotropic deformation of the Heisenberg magnet hierarchy, a matrix and vector generalization of the Landau–Lifshitz hierarchies, new types of matrix and vector anisotropic chiral-field hierarchies, and other types of anisotropic hierarchies.
Keywords:
hierarchies of integrable models, infinite algebras, Kostant–Adler scheme.
@article{TMF_2005_142_2_a10,
author = {T. V. Skrypnik},
title = {Quasigraded lie algebras, {Kostant--Adler} scheme, and integrable hierarchies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {329--345},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a10/}
}
TY - JOUR AU - T. V. Skrypnik TI - Quasigraded lie algebras, Kostant--Adler scheme, and integrable hierarchies JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2005 SP - 329 EP - 345 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a10/ LA - ru ID - TMF_2005_142_2_a10 ER -
T. V. Skrypnik. Quasigraded lie algebras, Kostant--Adler scheme, and integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 329-345. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a10/