Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 329-345 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using special “anisotropic” quasigraded Lie algebras, we obtain a number of new hierarchies of integrable nonlinear equations in partial derivatives admitting zero-curvature representations. Among them are an anisotropic deformation of the Heisenberg magnet hierarchy, a matrix and vector generalization of the Landau–Lifshitz hierarchies, new types of matrix and vector anisotropic chiral-field hierarchies, and other types of anisotropic hierarchies.
Keywords: hierarchies of integrable models, infinite algebras, Kostant–Adler scheme.
@article{TMF_2005_142_2_a10,
     author = {T. V. Skrypnik},
     title = {Quasigraded lie algebras, {Kostant{\textendash}Adler} scheme, and integrable hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--345},
     year = {2005},
     volume = {142},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a10/}
}
TY  - JOUR
AU  - T. V. Skrypnik
TI  - Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 329
EP  - 345
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a10/
LA  - ru
ID  - TMF_2005_142_2_a10
ER  - 
%0 Journal Article
%A T. V. Skrypnik
%T Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 329-345
%V 142
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a10/
%G ru
%F TMF_2005_142_2_a10
T. V. Skrypnik. Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 329-345. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a10/

[1] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[2] B. Kostant, Adv. Math., 34 (1979), 195 | DOI | MR | Zbl

[3] A. Reyman, M. Semenov-Tian-Shansky, Invent. math., 54 (1979), 81 | DOI | MR | Zbl

[4] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Teoretiko-gruppovye metody v teorii integriruemykh sistem”, Dinamicheskie sistemy, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, ed. R. V. Gamkrelidze, VINITI, M., 1987, 119 | MR

[5] A. S. Nyuell, Solitony v matematike i fizike, Mir, M., 1985 | MR

[6] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[7] A. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443; В. Г. Дринфельд, В. В. Соколов, “Алгебры Ли и уравнения типа Кортевега–де Фриза”, Итоги науки и техники. Современные проблемы математики, 24, ред. Р. В. Гамкрелидзе, ВИНИТИ, М., 1984, 81–180 | MR

[8] M. de Groot, T. Hollowood, J. Miramontes, Commun. Math. Phys., 145 (1992), 57 | DOI | MR | Zbl

[9] P. Holod, T. Skrypnyk, Nauk. Zap. NAUKMA. Ser. Phys.-Math. Sci., 18 (2000), 20

[10] T. Skrypnyk, YaF, 65:6 (2002), 1141 ; ; J. Math. Phys., 48 (2001), 4570 E-print nlin.SI-0010005 | MR | DOI | MR

[11] T. Skrypnyk, P. Holod, J. Phys. A, 34 (2001), 1123 | DOI | MR

[12] T. Skrypnyk, Czech. J. Phys., 52 (2002), 1283 | DOI | MR | Zbl

[13] T. Skrypnyk, J. Phys. A, 36 (2003), 4407 | DOI | MR | Zbl

[14] T. Skrypnyk, Czech. J. Phys., 53 (2003), 1119 | DOI | MR

[15] T. Skrypnyk, “Matrix generalization of Landau–Lifshitz equation”, Proc. Inst. Math. Kiev-2004, P. 1, ed. A. G. Nikitin, Inst. Math., Kiev, 2004, 462 | MR | Zbl

[16] T. Skrypnyk, J. Math. Phys., 45 (2004), 4578 | DOI | MR | Zbl

[17] T. Skrypnyk, J. Phys. A, 37:31 (2004), 7755 | DOI | MR | Zbl

[18] P. I. Golod, Dvumerizatsiya sistemy Kirkhgofa v integriruemom sluchae Steklova, Preprint ITF-84-87R, ITF, Kiev, 1984

[19] P. I. Golod, DAN USSR, 276 (1984), 6 | MR

[20] P. I. Golod, TMF, 70 (1987), 18 | MR

[21] P. I. Golod, DAN SSSR, 32 (1987), 107 | Zbl

[22] Yu. N. Sidorenko, Zap. nauchn. semin. LOMI, 161, no. 7, 1987, 76

[23] I. M. Krichever, S. P. Novikov, Funkts. analiz i ego prilozh., 21:2 (1987), 46 | MR | Zbl

[24] P. Etingof, O. Shiffman, Lectures on Quantum Groups, Intern. Press, Boston, 2002 | MR

[25] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego prilozh., 16:3 (1982), 1 | MR | Zbl

[26] H. Flaschka, A. Newell, T. Ratiu, Physica D, 9 (1983), 303 ; 324 | DOI | MR | Zbl

[27] E. Sklyanin, On the complete integrability of the Landau–Lifshitz equation, Preprint LOMI E-3-37, LOMI, L., 1979 | MR

[28] I. V. Cherednik, YaF, 33:1 (1981), 278

[29] I. Z. Golubchik, V. V. Sokolov, TMF, 124 (2000), 62 | DOI | MR | Zbl

[30] I. Z. Golubchik, V. V. Sokolov, Funkts. analiz i ego prilozh., 34:4 (2000), 296 | MR | Zbl

[31] I. Z. Golubchik, V. V. Sokolov, Funkts. analiz i ego prilozh., 36:3 (2002), 172 | MR | Zbl

[32] I. V. Cherednik, Funkts. analiz i ego prilozh., 17:3 (1983), 93 | MR | Zbl

[33] L. Borgad, A. Yanovsky, J. Phys. A, 28 (1995), 4007 | DOI | MR

[34] P. I. Golod, Integriruemye sistemy na orbitakh affinnykh grupp Li i periodicheskie resheniya uravnenii mKdV, Preprint ITF-82-144R, ITF, Kiev, 1982

[35] I. Kantor, D. Pirsits, “O zamknutykh puchkakh lineinykh skobok Puassona”, Materialy IX konferentsii po geometrii, Shtinitsa, Kishinev, 1988, 141

[36] V. Mikhailov, A. Shabat, Phys. Lett. A, 116 (1986), 191–194 | DOI | MR

[37] P. Oh, Q-Han Park, Phys. Lett. B, 383 (1996), 333 ; E-print hep-th 9604031 | DOI | MR

[38] H. Chen, Phys. Rev. Lett., 33 (1974), 925 | DOI | MR | Zbl