Whitham hierarchy in growth problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 197-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the recently established equivalence between the Laplacian growth in the limit of zero surface tension and the universal Whitham hierarchy known in soliton theory. This equivalence allows distinguishing a class of exact solutions of the Laplacian growth problem in the multiply connected case. These solutions correspond to finite-dimensional reductions of the Whitham hierarchy representable as equations of hydrodynamic type, which are solvable by the generalized hodograph method.
Mots-clés : Saffman–Taylor problem
Keywords: Laplacian growth, Whitham equations, Schwarz function.
@article{TMF_2005_142_2_a1,
     author = {A. V. Zabrodin},
     title = {Whitham hierarchy in growth problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {197--217},
     year = {2005},
     volume = {142},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a1/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - Whitham hierarchy in growth problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2005
SP  - 197
EP  - 217
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a1/
LA  - ru
ID  - TMF_2005_142_2_a1
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T Whitham hierarchy in growth problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2005
%P 197-217
%V 142
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a1/
%G ru
%F TMF_2005_142_2_a1
A. V. Zabrodin. Whitham hierarchy in growth problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 197-217. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a1/

[1] D. Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman, C. Tang, Rev. Mod. Phys., 58 (1986), 977–999 | DOI

[2] S. Richardson, J. Fluid Mech., 56 (1972), 609–618 ; Eur. J. Appl. Math., 5 (1994), 97–122 ; Phil. Trans. R Soc. London A, 354 (1996), 2513–2553 ; Eur. J. Appl. Math., 12 (2001), 571–599 ; П. И. Этингоф, ДАН СССР, 313 (1990), 42–47 | DOI | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR

[3] S. Howison, Eur. J. Appl. Math., 3 (1992), 209–224 | DOI | MR | Zbl

[4] A. N. Varchenko, P. I. Etingof, Pochemu granitsa krugloi kapli prevraschaetsya v inversnyi obraz ellipsa?, Nauka, M., 1995 | MR | Zbl

[5] L. A. Galin, DAN SSSR, 47 (1945), 250–253 | MR

[6] B. Shraiman, D. Bensimon, Phys. Rev. A, 30 (1984), 2840–2842 | DOI | MR

[7] M. Mineev-Weinstein, S. P. Dawson, Phys. Rev. E, 50 (1994), R24–R27 | DOI

[8] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Phys. Rev. Lett., 84 (2000), 5106–5109 | DOI

[9] I. Krichever, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Laplacian growth and Whitham equations soliton theory, E-print nlin.SI/0311005

[10] I. M. Krichever, Funkts. analiz i ego prilozh., 22:3 (1988), 37–52 ; УМН, 44:2 (1989), 121–184 | MR | Zbl | MR | Zbl

[11] I. Krichever, Commun. Pure. Appl. Math., 47 (1992), 437–476 | DOI | MR

[12] S. P. Tsarev, DAN SSSR, 282 (1985), 534–537 | MR | Zbl

[13] M. Shiffer, D. Spenser, Funktsionaly na konechnykh rimanovykh poverkhnostyakh, IL, M., 1957

[14] J. Hadamard, Mém. présentés par divers savants à l'Acad. sci., 33 (1908) ; П. Леви, Конкретные проблемы функционального анализа, ИЛ, М., 1960 | Zbl | MR

[15] G. B. Whitham, Linear and nonlinear waves, Wiley, New York, 1974 ; H. Flashka, M. Forest, D. McLaughlin, Commun. Pure Appl. Math., 33 (1980), 739–784 | MR | Zbl | DOI | MR

[16] P. J. Davis, The Schwarz function and its applications, The Carus Math. Monographs, 17, The Math. Assotiation of America, Washington, 1974 | MR

[17] B. Gustafsson, Acta Appl. Math., 1 (1983), 209–240 | DOI | MR | Zbl

[18] R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann, Normal random matrix ensemble as a growth problem, E-print hep-th/0401165 | MR

[19] V. Kazakov, A. Marshakov, J. Phys. A, 36 (2003), 4629–4640 | DOI | MR