Whitham hierarchy in growth problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 197-217
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the recently established equivalence between the Laplacian growth in the limit of zero surface tension and the universal Whitham hierarchy known in soliton theory. This equivalence allows distinguishing a class of exact solutions of the Laplacian growth problem in the multiply connected case. These solutions correspond to finite-dimensional reductions of the Whitham hierarchy representable as equations of hydrodynamic type, which are solvable by the generalized hodograph method.
Mots-clés :
Saffman–Taylor problem
Keywords: Laplacian growth, Whitham equations, Schwarz function.
Keywords: Laplacian growth, Whitham equations, Schwarz function.
@article{TMF_2005_142_2_a1,
author = {A. V. Zabrodin},
title = {Whitham hierarchy in growth problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {197--217},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a1/}
}
A. V. Zabrodin. Whitham hierarchy in growth problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 142 (2005) no. 2, pp. 197-217. http://geodesic.mathdoc.fr/item/TMF_2005_142_2_a1/