Exact Anomalous Dimensions of Composite Operators in the Obukhov--Kraichnan Model
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 455-468
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider two stochastic equations that describe the turbulent transfer of a passive scalar field $\theta(x)\equiv\theta(t,\mathbf x)$ and generalize the known Obukhov–Kraichnan model to the case of a possible compressibility and large-scale anisotropy. The pair correlation function of the field $\theta(x)$ is characterized by an infinite collection of anomalous indices, which have previously been found exactly using the zero-mode method. In the quantum field formulation, these indices are identified with the critical dimensions of an infinite family of tensor composite operators that are quadratic in the field $\theta(x)$, which allows obtaining exact values for the latter (the values not restricted to the $\varepsilon$-expansion) and then using them to find the corresponding renormalization constants. The identification of the correlation function indices with the composite-operator dimensions itself is supported by a direct calculation of the critical dimensions in the one-loop approximation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Obukhov–Kraichnan model
Keywords: anomalous scaling, passive scalar.
                    
                  
                
                
                Keywords: anomalous scaling, passive scalar.
@article{TMF_2004_141_3_a7,
     author = {N. V. Antonov and P. B. Goldin},
     title = {Exact {Anomalous} {Dimensions} of {Composite} {Operators} in the {Obukhov--Kraichnan} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {455--468},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/}
}
                      
                      
                    TY - JOUR AU - N. V. Antonov AU - P. B. Goldin TI - Exact Anomalous Dimensions of Composite Operators in the Obukhov--Kraichnan Model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 455 EP - 468 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/ LA - ru ID - TMF_2004_141_3_a7 ER -
%0 Journal Article %A N. V. Antonov %A P. B. Goldin %T Exact Anomalous Dimensions of Composite Operators in the Obukhov--Kraichnan Model %J Teoretičeskaâ i matematičeskaâ fizika %D 2004 %P 455-468 %V 141 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/ %G ru %F TMF_2004_141_3_a7
N. V. Antonov; P. B. Goldin. Exact Anomalous Dimensions of Composite Operators in the Obukhov--Kraichnan Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 455-468. http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/
