Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 455-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two stochastic equations that describe the turbulent transfer of a passive scalar field $\theta(x)\equiv\theta(t,\mathbf x)$ and generalize the known Obukhov–Kraichnan model to the case of a possible compressibility and large-scale anisotropy. The pair correlation function of the field $\theta(x)$ is characterized by an infinite collection of anomalous indices, which have previously been found exactly using the zero-mode method. In the quantum field formulation, these indices are identified with the critical dimensions of an infinite family of tensor composite operators that are quadratic in the field $\theta(x)$, which allows obtaining exact values for the latter (the values not restricted to the $\varepsilon$-expansion) and then using them to find the corresponding renormalization constants. The identification of the correlation function indices with the composite-operator dimensions itself is supported by a direct calculation of the critical dimensions in the one-loop approximation.
Mots-clés : Obukhov–Kraichnan model
Keywords: anomalous scaling, passive scalar.
@article{TMF_2004_141_3_a7,
     author = {N. V. Antonov and P. B. Goldin},
     title = {Exact {Anomalous} {Dimensions} of {Composite} {Operators} in the {Obukhov{\textendash}Kraichnan} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {455--468},
     year = {2004},
     volume = {141},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - P. B. Goldin
TI  - Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 455
EP  - 468
VL  - 141
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/
LA  - ru
ID  - TMF_2004_141_3_a7
ER  - 
%0 Journal Article
%A N. V. Antonov
%A P. B. Goldin
%T Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 455-468
%V 141
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/
%G ru
%F TMF_2004_141_3_a7
N. V. Antonov; P. B. Goldin. Exact Anomalous Dimensions of Composite Operators in the Obukhov–Kraichnan Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 455-468. http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a7/

[1] G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Mod. Phys., 73 (2001), 913 | DOI | MR | Zbl

[2] D. Bernard, K. Gawȩdzki, A. Kupiainen, Phys. Rev. E, 54 (1996), 2564 | DOI | MR

[3] M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E, 52 (1995), 4924 | DOI | MR

[4] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, Phys. Rev. E, 58 (1998), 1823 ; Л. Ц. Аджемян, Н. В. Антонов, А. Н. Васильев, ТМФ, 120 (1999), 309 | DOI | MR | DOI | MR | Zbl

[5] L. Ts. Adzhemyan, N. V. Antonov, Phys. Rev. E, 58 (1998), 7381 | DOI | MR

[6] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov et al., Phys. Rev. E, 64 (2001), 056306 | DOI

[7] M. Fisher, Priroda kriticheskogo sostoyaniya, Mir, M., 1968; Г. Стенли, Фазовые переходы и критические явления, Мир, М., 1973; Ф. Дайсон, Э. Монтролл, М. Кац, М. Фишер, Устойчивость и фазовые переходы, Мир, М., 1973 | MR

[8] N. V. Antonov, J. Honkonen, Phys. Rev. E, 63 (2001), 036302 | DOI

[9] N. V. Antonov, Yu. R. Khonkonen, Vestn. SPbu. Ser. Fizika, Khimiya, 2004, no. 1 (to appear)

[10] W. Heisenberg, Z. Phys., 124 (1948), 628 | DOI | MR | Zbl

[11] L. Ts. Adzhemyan, N. V. Antonov, TMF, 115 (1998), 245 | DOI | MR | Zbl

[12] D. V. Shirkov, DAN SSSR, 263 (1982), 64 ; ТМФ, 60 (1984), 218 | MR | MR

[13] T. D. Lee, Phys. Rev., 95 (1954), 1329 | DOI | Zbl

[14] W. Thirring, Ann. Phys., 3 (1958), 91 | DOI | MR | Zbl

[15] K. G. Wilson, Phys. Rev. D, 2 (1970), 1438 | DOI | MR | Zbl

[16] A. N. Vasilev, Kvantovo-polevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, S.-P., 1998

[17] U. Frisch, A. Mazzino, A. Noullez, M. Vergassola, Phys. Fluids, 11 (1999), 2178 ; A. Mazzino, P. Muratore Ginanneschi, Phys. Rev. E, 63 (2001), 015302(R) | DOI | MR | Zbl | DOI