Mots-clés : Dirac monopole
@article{TMF_2004_141_3_a6,
author = {M. V. Karasev and E. M. Novikova},
title = {Algebra with {Quadratic} {Commutation} {Relations} for an {Axially} {Perturbed} {Coulomb{\textendash}Dirac} {Field}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {424--454},
year = {2004},
volume = {141},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a6/}
}
TY - JOUR AU - M. V. Karasev AU - E. M. Novikova TI - Algebra with Quadratic Commutation Relations for an Axially Perturbed Coulomb–Dirac Field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 424 EP - 454 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a6/ LA - ru ID - TMF_2004_141_3_a6 ER -
M. V. Karasev; E. M. Novikova. Algebra with Quadratic Commutation Relations for an Axially Perturbed Coulomb–Dirac Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 424-454. http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a6/
[1] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR
[2] M. V. Karasev, Funkts. analiz i ego prilozh., 18:2 (1984), 65–66 | MR | Zbl
[3] M. V. Karasev, V. P. Maslov, UMN, 39:6 (1984), 115–173 ; М. В. Карасев, Квантовая редукция на орбиты алгебр симметрий и задача Эренфеста, Препринт ИТФ-87-157P, ИТФ АН УССР, Киев, 1987 | MR | Zbl
[4] J. R. Klauder, B. S. Skagerstam, Coherent States. Applications in Physics and Mathematics, World Scientific, Singapore, 1985 ; А. М. Переломов, Обобщенные когерентные состояния и их применения, Наука, М., 1987 | MR | Zbl | MR
[5] M. Karasev, Russ. J. Math. Phys., 3 (1995), 393–400 | MR | Zbl
[6] M. V. Karasev, Lett. Math. Phys., 56 (2001), 229–269 | DOI | MR | Zbl
[7] M. V. Karasev, E. M. Novikova, UMN, 49:5 (1994), 169–170 | MR | Zbl
[8] M. V. Karasev, E. M. Novikova, TMF, 108:3 (1996), 339–387 | DOI | MR | Zbl
[9] M. V. Karasev, E. M. Novikova, J. Math. Sci., New York, 95:6 (1999), 2703–2798 | DOI | MR | Zbl
[10] M. V. Karasev, E. M. Novikova, “Adapted connections, Hamilton dynamics, geometric phases and quantization over isotropic submanifolds”, Coherent Transform, Quantization, and Poisson Geometry, ed. M. V. Karasev, AMS, Providence, RI, 1998, 1–202 | MR
[11] M. V. Karasev, E. M. Novikova, Matem. zametki, 70:6 (2001), 854–874 | DOI | MR | Zbl
[12] M. V. Karasev, E. M. Novikova, Matem. zametki, 72:1 (2002), 54–73 | DOI | MR | Zbl
[13] V. P. Maslov, TMF, 33:2 (1977), 185–209 ; М. В. Карасев, В. П. Маслов, УМН, 45:5 (1990), 41–79 ; Нелинейные скобки Пуассона. Геометрия и квантование, Наука, М., 1991 | MR | Zbl | MR | Zbl | MR | Zbl
[14] E. K. Sklyanin, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 ; 17:4 (1983), 34–48 | MR | Zbl | MR | Zbl
[15] H. V. McIntosh, A. Cisneros, J. Math. Phys., 11:3 (1970), 896–916 | DOI | MR
[16] I. Mladenov, V. Tsanov, J. Phys. A, 20 (1987), 5865–5871 | DOI | MR | Zbl
[17] T. Iwai, Y. Uwano, J. Phys. A, 21 (1988), 4083–4104 | DOI | MR | Zbl
[18] I. Mladenov, Ann. Inst. H. Poincare, 50:2 (1989), 219–227 | MR | Zbl
[19] A. Yoshioka, K. Ii, J. Math. Phys., 31:6 (1990), 1388–1394 | DOI | MR | Zbl
[20] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973 | MR
[21] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974 | MR
[22] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR
[23] P. Kustaanheimo, Ann. Univ. Turku A, 73:1 (1964), 3–7 ; P. Kustaanheimo, E. Stiefel, J. Reine Angew. Math., 218 (1965), 204–219 | MR | MR | Zbl