Refined Enumerations of Some Symmetry Classes of Alternating-Sign Matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 323-347
Voir la notice de l'article provenant de la source Math-Net.Ru
Using determinant representations for partition functions of the corresponding variants of square-ice models and the method recently proposed by one of us, we investigate refined enumerations of vertically symmetric alternating-sign matrices, off-diagonally symmetric alternating-sign matrices, and alternating-sign matrices with a $U$-turn boundary. For all these cases, we find explicit formulas for refined enumerations. In particular, we prove the Kutin–Yuen conjecture.
Keywords:
alternating-sign matrices, enumerations, square-ice model.
@article{TMF_2004_141_3_a0,
author = {A. V. Razumov and Yu. G. Stroganov},
title = {Refined {Enumerations} of {Some} {Symmetry} {Classes} of {Alternating-Sign} {Matrices}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--347},
publisher = {mathdoc},
volume = {141},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a0/}
}
TY - JOUR AU - A. V. Razumov AU - Yu. G. Stroganov TI - Refined Enumerations of Some Symmetry Classes of Alternating-Sign Matrices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 323 EP - 347 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a0/ LA - ru ID - TMF_2004_141_3_a0 ER -
A. V. Razumov; Yu. G. Stroganov. Refined Enumerations of Some Symmetry Classes of Alternating-Sign Matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 323-347. http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a0/