Refined Enumerations of Some Symmetry Classes of Alternating-Sign Matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 323-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using determinant representations for partition functions of the corresponding variants of square-ice models and the method recently proposed by one of us, we investigate refined enumerations of vertically symmetric alternating-sign matrices, off-diagonally symmetric alternating-sign matrices, and alternating-sign matrices with a $U$-turn boundary. For all these cases, we find explicit formulas for refined enumerations. In particular, we prove the Kutin–Yuen conjecture.
Keywords: alternating-sign matrices, enumerations, square-ice model.
@article{TMF_2004_141_3_a0,
     author = {A. V. Razumov and Yu. G. Stroganov},
     title = {Refined {Enumerations} of {Some} {Symmetry} {Classes} of {Alternating-Sign} {Matrices}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--347},
     year = {2004},
     volume = {141},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a0/}
}
TY  - JOUR
AU  - A. V. Razumov
AU  - Yu. G. Stroganov
TI  - Refined Enumerations of Some Symmetry Classes of Alternating-Sign Matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 323
EP  - 347
VL  - 141
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a0/
LA  - ru
ID  - TMF_2004_141_3_a0
ER  - 
%0 Journal Article
%A A. V. Razumov
%A Yu. G. Stroganov
%T Refined Enumerations of Some Symmetry Classes of Alternating-Sign Matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 323-347
%V 141
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a0/
%G ru
%F TMF_2004_141_3_a0
A. V. Razumov; Yu. G. Stroganov. Refined Enumerations of Some Symmetry Classes of Alternating-Sign Matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 3, pp. 323-347. http://geodesic.mathdoc.fr/item/TMF_2004_141_3_a0/

[1] M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34 (2001), L265–L270 ; ; Int. J. Mod. Phys. B, 16 (2002), 1883–1890 ; ; P. Di Francesco, P. Zinn-Justin, J.-B. Zuber, A bijection between classes of fully packed loops and plane partitions, ; J. de Gier, M. Batchelor, B. Nienhuis, S. Mitra, The XXZ spin chain at $\Delta= - 1/2$: Bethe roots, symmetric functions and determinants, ; J. de Gier, B. Nienhuis, P. A. Pearce, V. Rittenberg, J. Stat. Phys., 114 (2004), 1–35 ; ; N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, J. Phys. A, 35 (2002), L385–L391 ; ; P. A. Pearce, V. Rittenberg, J. de Gier, Critical $Q=1$ Potts model and Temperley–Lieb stochastic processes, ; A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 3185–3190 ; ; ; ; А. В. Разумов, Ю. Г. Строганов, ТМФ, 138 (2004), 395–400 ; ; A. V. Razumov, Yu. G. Stroganov, O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices, ; J.-B. Zuber, On the counting of fully packed loop configurations. Some new conjectures, E-print cond-mat/0101385E-print math-ph/0204002E-print math.CO/0311220E-print math-ph/0110011E-print cond-mat/0301430E-print hep-th/0201134E-print cond-mat/0108051E-print cond-mat/0012141E-print cond-mat/0102247E-print math.CO/0104216E-print cond-mat/0108103E-print math-ph/0309057 | DOI | MR | Zbl | DOI | MR | MR | MR | DOI | MR | Zbl | DOI | MR | MR | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | MR

[2] Yu. G. Stroganov, A new way to deal with Izergin–Korepin determinant at root of unity, E-print math-ph/0204042

[3] G. Kuperberg, E-mail message to private “domino” forum, 29 August 2003; for access to forum contact Jim Propp at propp\@math.wisc.edu

[4] G. Kuperberg, Ann. Math., 156 (2002), 835–866 ; E-print math.CO/0008184 | DOI | MR

[5] V. E. Korepin, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[6] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, J. Algebraic Combin., 1 (1992), 111–132 | DOI | MR | Zbl

[7] G. Kuperberg, Int. Math. Res. Notices, 3 (1996), 139–150 | DOI | MR | Zbl

[8] A. G. Izergin, DAN SSSR, 297:2 (1987), 331–333 ; Н. М. Боголюбов, А. Г. Изергин, В. Е. Корепин, Корреляционные функции интегрируемых систем и квантовый метод обратной задачи, Наука, М., 1992 | MR | Zbl | MR

[9] W. H. Mills, D. P. Robbins, H. Rumsey, Invent. Math., 66 (1982), 73–87 ; J. Combin. Theory. Ser. A, 34 (1983), 340–359 | DOI | MR | Zbl | DOI | MR | Zbl

[10] D. Zeilberger, Electron. J. Combin., 3:2 (1996), #R13 ; E-print math.CO/9407211 | MR | Zbl

[11] O. Tsuchiya, J. Math. Phys., 39 (1998), 5946–5951 | DOI | MR | Zbl

[12] D. Zeilberger, New York J. Math., 2 (1996), 59–68 ; E-print math.CO/9606224 | MR | Zbl

[13] Yu. G. Stroganov, J. Phys. A, 34 (2001), L179–L185 | DOI | MR | Zbl

[14] D. P. Robbins, Symmetry classes of alternating sign matrices, E-print math.CO/0008045

[15] S. Okada, J. Algebra, 205 (1998), 337–367 | DOI | MR | Zbl