Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 243-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate invariant submanifolds of the so-called Darboux–Kadomtsev–Petviashvili chain. We show that restricting the dynamics to a class of invariant submanifolds yields an extension of the discrete Kadomtsev–Petviashvili hierarchy and intersections of invariant submanifolds yield the Lax description of a wide class of differential-difference systems. We consider self-similar reductions. We show that self-similar substitutions result in purely discrete equations that depend on a finite set of parameters and in equations determining deformations w.r.t. these parameters. We present examples. In particular, we show that the well-known first discrete Painlevé equation corresponds to the Volterra chain hierarchy. We derive the equations naturally generalizing the first discrete Painlevé equation in the sense that all of them become the first Painlevé equation in the continuum limit.
Keywords: discrete Kadomtsev–Petviashvili hierarchy, invariant submanifolds, Darboux map.
@article{TMF_2004_141_2_a5,
     author = {A. K. Svinin},
     title = {Invariant {Submanifolds} of the {Darboux{\textendash}Kadomtsev{\textendash}Petviashvili} {Chain} and {an~Extension} of the {Discrete} {Kadomtsev{\textendash}Petviashvili} {Hierarchy}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--266},
     year = {2004},
     volume = {141},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a5/}
}
TY  - JOUR
AU  - A. K. Svinin
TI  - Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 243
EP  - 266
VL  - 141
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a5/
LA  - ru
ID  - TMF_2004_141_2_a5
ER  - 
%0 Journal Article
%A A. K. Svinin
%T Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 243-266
%V 141
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a5/
%G ru
%F TMF_2004_141_2_a5
A. K. Svinin. Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 243-266. http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a5/

[1] F. Magri, M. Pedroni, J. P. Zubelli, Commun. Math. Phys., 188 (1997), 305 | DOI | MR | Zbl

[2] A. K. Svinin, Lett. Math. Phys., 61 (2002), 231 | DOI | MR | Zbl

[3] K. Ueno, K. Takasaki, Proc. Japan Acad. A, 59 (1983), 169; 215

[4] P. Casati, G. Falqui, F. Magri, M. Pedroni, The KP theory revisited. I–IV, Preprints SISSA/2–5/96/FM, SISSA, Trieste, 1996; J. Math. Phys., 38 (1997), 4605 ; G. Falqui, F. Magri, M. Pedroni, Commun. Math. Phys., 197 (1998), 303 | DOI | MR | DOI | MR | Zbl

[5] I. V. Cherednik, Funkts. analiz i ego prilozh., 12 (1978), 45 | MR | Zbl

[6] G. Wilson, Quart. J. Math. Oxford, 32 (1981), 491 | DOI | Zbl

[7] B. A. Kupershmidt, KP ili mKP: nekommutativnaya matematika lagranzhevykh, gamiltonovykh i integriruemykh sistem, NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2002

[8] I. M. Krichever, Funkts. analiz i ego prilozh., 29:2 (1995), 1 | MR | Zbl

[9] B. G. Konopelchenko, Phys. Lett. A, 92 (1982), 323 ; M. Jimbo, T. Miwa, Publ. Res. Inst. Math. Sci., 59 (1983), 943 | DOI | MR | DOI | MR

[10] L.-L. Chau, J. C. Shaw, H. C. Yen, Commun. Math. Phys., 149 (1992), 263 | DOI | MR | Zbl

[11] L. A. Dickey, Lett. Math. Phys., 35 (1995), 229 | DOI | MR | Zbl

[12] I. M. Gelfand, L. A. Dikii, Funkts. analiz i ego prilozh., 10 (1976), 18 | Zbl

[13] B. A. Kupershmidt, Discrete Lax Equations and Differential-Difference Calculus, Astérisque, Paris, 1985 | MR | Zbl

[14] J. L. Cieśliński, M. Czachor, N. V. Ustinov, J. Math. Phys., 44 (2003), 1763 | DOI | MR | Zbl

[15] K. Narita, J. Phys. Soc. Japan, 51 (1982), 1682 | DOI | MR

[16] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony. Nelineinye integriruemye uravneniya, Nauka, M., 1991 | MR

[17] M. Błaszak, K. Marciniak, J. Math. Phys., 35 (1994), 4661 | DOI | MR

[18] A. A. Belov, K. D. Chaltikian, Phys. Lett. B, 309 (1993), 268 | DOI | MR | Zbl

[19] X.-B. Hu, H.-W. Tam, Inverse Problems, 17 (2001), 319 | DOI | MR | Zbl

[20] V. E. Adler, V. G. Marikhin, A. B. Shabat, TMF, 129 (2001), 163 | DOI | Zbl

[21] A. K. Svinin, J. Phys. A, 35 (2002), 2045 | DOI | MR | Zbl

[22] H. Aratyn, L. A. Ferreira, A. H. Zimermann, Phys. Lett. B, 327 (1994), 266 | DOI | MR

[23] A. K. Svinin, TMF, 130 (2002), 15 | DOI | MR | Zbl

[24] H. Aratyn, E. Nissimov, S. Pacheva, Int. J. Mod. Phys. A, 12 (1997), 1265 ; L. Bonora, C. S. Xiong, Nucl. Phys. B, 405 (1993), 191 | DOI | MR | Zbl | DOI | MR | Zbl

[25] B. Grammaticos, A. Ramani, V. Papageorgiou, Phys. Rev. Lett., 67 (1991), 1825 | DOI | MR | Zbl

[26] N. A. Lukashevich, Diff. uravneniya, 3 (1967), 771 ; В. И. Громак, Дифф. уравнения, 14 (1978), 2131 | Zbl | MR | Zbl

[27] B. Grammaticos, A. Ramani, J. Phys. A, 31 (1998), 5787 | DOI | MR | Zbl

[28] V. G. Marikhin, A. B. Shabat, M. Boiti, F. Pempinelli, ZhETF, 117 (2000), 634 | MR