Green's Function of a Hartree-Type Equation with a Quadratic Potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 228-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the complex WKB–Maslov method, we consider a solution of the Cauchy problem for a Hartree-type equation with a quadratic potential in the class of semiclassically supported functions. In this class, we obtain the evolution operator explicitly. We find parametric families of symmetry operators of the Hartree-type equation. Using the symmetry operators, we construct a family of exact solutions of this equation.
Keywords: Maslov complex germ method, Hartree-type equation, symmetry operators.
@article{TMF_2004_141_2_a4,
     author = {A. L. Lisok and A. Yu. Trifonov and A. V. Shapovalov},
     title = {Green's {Function} of a {Hartree-Type} {Equation} with a {Quadratic} {Potential}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {228--242},
     year = {2004},
     volume = {141},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a4/}
}
TY  - JOUR
AU  - A. L. Lisok
AU  - A. Yu. Trifonov
AU  - A. V. Shapovalov
TI  - Green's Function of a Hartree-Type Equation with a Quadratic Potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 228
EP  - 242
VL  - 141
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a4/
LA  - ru
ID  - TMF_2004_141_2_a4
ER  - 
%0 Journal Article
%A A. L. Lisok
%A A. Yu. Trifonov
%A A. V. Shapovalov
%T Green's Function of a Hartree-Type Equation with a Quadratic Potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 228-242
%V 141
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a4/
%G ru
%F TMF_2004_141_2_a4
A. L. Lisok; A. Yu. Trifonov; A. V. Shapovalov. Green's Function of a Hartree-Type Equation with a Quadratic Potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 228-242. http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a4/

[1] L. V. Ovsyanikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 ; Л. В. Ибрагимов, Группы преобразований в математической физике, Наука, М., 1983 ; В. К. Андреев, О. В. Капцов, В. В. Пухначев, А. А. Родионов, Применение теоретико-групповых методов в гидродинамике, Наука, Новосибирск, 1994 ; П. Олвер, Приложения групп Ли к дифференциальным уравнениям, Мир, М., 1989 ; В. И. Фущич, А. Г. Никитин, Симметрия уравнений Максвелла, Наукова думка, Киев, 1983 ; G. Gaeta, Nonlinear Symmetry and Nonlinear Equations, Kluwer, Dordrecht, 1994 | MR | MR | MR | MR | Zbl | MR | MR | Zbl

[2] Vo Khan Fuk, V. M. Chetverikov, TMF, 36:3 (1978), 345 | MR

[3] V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, Int. J. Math. Math. Sci., 32:6 (2002), 325 | DOI | MR | Zbl

[4] V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, TMF, 130:3 (2002), 460 | DOI | MR | Zbl

[5] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 ; В. В. Белов, С. Ю. Доброхотов, ТМФ, 92:2 (1992), 215 | MR | MR

[6] V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, Ann. Phys., 246:2 (1996), 231 | DOI | MR | Zbl

[7] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Nauka, M., 1989 | MR

[8] L. P. Pitaevskii, UFN, 168 (1998), 641 | DOI

[9] V. V. Pukhnachev, DAN SSSR. Ser. matem., 294 (1987), 535 | MR | Zbl

[10] P. Erenfest, “Zamechanie o priblizhennoi spravedlivosti klassicheskoi mekhaniki v ramkakh kvantovoi mekhaniki”, Otnositelnost. Kvanty. Statistika, Nauka, M., 1972, 82 | MR

[11] H. P. Robertson, Phys. Rev., 46:9 (1934), 794 | DOI | Zbl

[12] V. V. Belov, M. F. Kondrateva, Matem. zametki, 56:6 (1994), 27 | MR | Zbl

[13] M. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 ; А. М. Переломов, Обобщенные когерентные состояния и их применение, Наука, М., 1987 | MR | MR

[14] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966 | MR