One Class of Liouville-Type Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 208-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that a class of systems with the Lagrangian of the form $L=\bigl[g_{ij}(u)u^i_xu^j_t\bigr]/2+f(u)$ is of the Liouville type. We construct new integrable Hamiltonian systems related to the symmetries of the hyperbolic systems under consideration by substitutions of the Miura transformation type. For one of the systems obtained, we construct the second-order recursion operator.
Mots-clés : system of Liouville type
Keywords: higher pseudoconstants, recursion operator.
@article{TMF_2004_141_2_a3,
     author = {D. K. Demskoi},
     title = {One {Class} of {Liouville-Type} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--227},
     year = {2004},
     volume = {141},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a3/}
}
TY  - JOUR
AU  - D. K. Demskoi
TI  - One Class of Liouville-Type Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 208
EP  - 227
VL  - 141
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a3/
LA  - ru
ID  - TMF_2004_141_2_a3
ER  - 
%0 Journal Article
%A D. K. Demskoi
%T One Class of Liouville-Type Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 208-227
%V 141
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a3/
%G ru
%F TMF_2004_141_2_a3
D. K. Demskoi. One Class of Liouville-Type Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 208-227. http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a3/

[1] A. V. Zhiber, A. B. Shabat, DAN SSSR, 247:5 (1979), 1103–1107 ; R. K. Dodd, R. K. Bullough, Proc. Roy. Soc. London A, 351 (1976), 499–523 | MR | DOI | MR | Zbl

[2] A. V. Zhiber, V. V. Sokolov, UMN, 56:1 (2001), 63–106 | DOI | MR | Zbl

[3] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[4] I. M. Anderson, N. Kamran, Duke Math. J, 87:2 (1997), 265–319 | DOI | MR | Zbl

[5] E. Goursat, Lecons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendants, T. I, 1896; T. II, Hermann, Paris, 1898 | Zbl

[6] A. V. Zhiber, Izv. RAN. Ser. matem., 58:4 (1994), 33–54 | Zbl

[7] A. V. Zhiber, V. V. Sokolov, TMF, 120:1 (1999), 20–26 | DOI | MR | Zbl

[8] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, BFAN SSSR, Ufa, 1981

[9] A. N. Leznov, V. G. Smirnov, A. B. Shabat, TMF, 51:1 (1982), 10–22 | MR

[10] V. V. Sokolov, UMN, 43:5 (1988), 133–163 | MR | Zbl

[11] D. K. Demskoi, A. G. Meshkov, “New integrable string-like fields in $1+1$ dimensions”, Proc. Second Int. Conf. Quantum Field Theory and Gravity (July 28 – August 2, 1997, Tomsk, Russia), eds. I. L. Bukhbinder, K. E. Osetrin, Tomsk Pedagogical University, Tomsk, 1998, 282–285

[12] D. K. Demskoi, A. G. Meshkov, TMF, 134:3 (2003), 401–415 | DOI | MR | Zbl

[13] S. Ya. Startsev, TMF, 116:3 (1998), 336–348 | DOI | MR | Zbl

[14] A. V. Zhiber, S. Ya. Startsev, Matem. zametki, 74:6 (2003), 849–858 | DOI | MR

[15] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[16] N. Yajima, M. Oikawa, Progr. Theor. Phys., 56 (1976), 1719–1739 | DOI | MR | Zbl