Integrable Boundary Value Problem for the Boussinesq Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 192-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a method for seeking integrable boundary conditions for nonlinear equations. For the Boussinesq equation, we find a new boundary condition that is compatible with the Lax pair and has an infinite set of higher symmetries and a Bäcklund transformation. We construct a class of explicit partial solutions of an equation satisfying this boundary condition.
Keywords: integrability, boundary condition, Bäcklund transformation, higher symmetries
Mots-clés : Boussinesq equation.
@article{TMF_2004_141_2_a2,
     author = {A. N. Vil'danov},
     title = {Integrable {Boundary} {Value} {Problem} for the {Boussinesq} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--207},
     year = {2004},
     volume = {141},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a2/}
}
TY  - JOUR
AU  - A. N. Vil'danov
TI  - Integrable Boundary Value Problem for the Boussinesq Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 192
EP  - 207
VL  - 141
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a2/
LA  - ru
ID  - TMF_2004_141_2_a2
ER  - 
%0 Journal Article
%A A. N. Vil'danov
%T Integrable Boundary Value Problem for the Boussinesq Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 192-207
%V 141
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a2/
%G ru
%F TMF_2004_141_2_a2
A. N. Vil'danov. Integrable Boundary Value Problem for the Boussinesq Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 192-207. http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a2/

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[2] A. Degasperis, S. V. Manakov, P. M. Santini, TMF, 133:2 (2002), 184–201 | DOI | MR

[3] A. V. Mikhailov, V. S. Novikov, J. Phys. A, 35 (2002), 4775–4790 | DOI | MR | Zbl

[4] I. T. Habibullin, Phys. Lett. A, 178 (1993), 369–373 | DOI | MR

[5] I. T. Habibullin, A. N. Vil'danov, “Boundary conditions consistent with $L-A$ pairs”, Modern Group Analysis for the New Millenium, Proc. Intern. Conf. MOGRAN-2000 (27 Sept. – 30 Oct. 2000), eds. V. A. Baikov et al., USATU, Ufa, 2001, 80–81

[6] V. Adler, B. Gürel, M. Gürses, I. Habibullin, J. Phys. A, 30 (1997), 3505–3513 | DOI | MR | Zbl

[7] R. F. Bikbaev, V. O. Tarasov, Algebra i analiz, 3:4 (1991), 78–92 | MR

[8] E. K. Sklyanin, Funkts. analiz i ego prilozh., 21:2 (1987), 86–87 | MR | Zbl

[9] S. Ghoshal, A. B. Zamolodchikov, Int. J. Mod. Phys. A, 9 (1994), 3841–3886 ; Erratum, 4353 ; E-print hep-th/9306002 | DOI | MR | MR | Zbl

[10] A. O. Smirnov, TMF, 66:1 (1986), 30–46 | MR | Zbl

[11] I. T. Habibullin, A. N. Vil'danov, “Integrable boundary conditions for nonlinear lattices”, SIDE III-Symmetries and Integrability of Difference Equations, CRM Proc. Lect. Notes, 25, eds. D. Levi, O. Ragnisco, AMS, Providence, RI, 2000, 173–180 | DOI | MR | Zbl

[12] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[13] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Ch. 2, Fizmatgiz, M., 1963