Periodic Optical Pulses in Nonlinear Optical Fibers
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 178-191
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss the problem of transmitting polarized pulses along optical fibers with variable dispersion. The dissipation and mean dispersion are assumed to be zero, which allows using the model of the vector nonlinear Schrödinger equation. We consider an optical fiber consisting of arms of equal length, which is assumed to be large. We propose an asymptotic recursive procedure for calculating the amplitude and the phase of an optical pulse propagating along the optical cable with variable dispersion.
Keywords:
optical pulses in telecommunication, optical fibers, nonlinear Schrödinger equation, inverse scattering problem.
@article{TMF_2004_141_2_a1,
author = {V. L. Vereshchagin},
title = {Periodic {Optical} {Pulses} in {Nonlinear} {Optical} {Fibers}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {178--191},
year = {2004},
volume = {141},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a1/}
}
V. L. Vereshchagin. Periodic Optical Pulses in Nonlinear Optical Fibers. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 178-191. http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a1/
[1] V. E. Zakharov, S. Wabnitz (eds.), Optical Solitons. Theoretical Challenges and Industrial Perspectives, Springer, EDP Sciences, Berlin, 1999
[2] V. E. Zakharov, S. V. Manakov, Pisma v ZhETF, 70:9 (1999), 573; А. Б. Шабат, Дифф. уравнения, 15:10 (1979), 1824 | MR | Zbl
[3] W. Forysiak, N. J. Doran, F. M. Knox, K. J. Blow, Optics Commun., 117 (1995), 65 | DOI
[4] I. Gabitov, S. Turitsyn, Opt. Lett., 21 (1996), 327 | DOI
[5] A. V. Mikhailov, V. Yu. Novokshenov, TMF, 134:1 (2003), 124 | DOI | MR | Zbl
[6] V. Yu. Novokshenov, UMN, 37:2 (224) (1982), 215 | MR | Zbl
[7] V. Yu. Novokshenov, DAN SSSR, 251:4 (1980), 799 | MR | Zbl
[8] P. A. Deift, X. Zhou, Commun. Math. Phys., 165 (1994), 175 | DOI | MR | Zbl