Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 163-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose iteration methods for solving the Dirichlet problem in domains with involved geometry. Such problems arise in relation to the problem of optimizing quantum dot and antidot infrared detectors. We estimate the deviation of an approximate solution from the exact solution.
Keywords: harmonic functionsб Poisson mapб maximum principle.
@article{TMF_2004_141_2_a0,
     author = {B. S. Pavlov and V. I. Ryzhii},
     title = {Quantum {Dot} and {Antidot} {Infrared} {Photodetectors:} {Iterative} {Methods} for {Solving} {the~Laplace} {Equation} {in~Domains} with {Involved} {Geometry}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--177},
     year = {2004},
     volume = {141},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/}
}
TY  - JOUR
AU  - B. S. Pavlov
AU  - V. I. Ryzhii
TI  - Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 163
EP  - 177
VL  - 141
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/
LA  - ru
ID  - TMF_2004_141_2_a0
ER  - 
%0 Journal Article
%A B. S. Pavlov
%A V. I. Ryzhii
%T Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 163-177
%V 141
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/
%G ru
%F TMF_2004_141_2_a0
B. S. Pavlov; V. I. Ryzhii. Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/

[1] V. Ryzhii, Semicond. Sci. Technol., 11 (1996), 759–765 | DOI

[2] V. Ryzhii, V. Pipa, I. Khmyrova, V. Mitin, M. Wilander, Japan. J. Appl. Phys. P 2, 39 (2000), L1283–L1285 | DOI

[3] M. Ryzhii, V. Ryzhii, V. Mitin, Microelectronics J., 34 (2003), 411–414 | DOI

[4] I. I. Vorovich, V. M. Aleksandrov, V. A. Babeshko, Neklassicheskie smeshannye zadachi teorii uprugosti, Nauka, M., 1974 | MR | Zbl

[5] V. Gotlib, DAN SSSR, 287:6 (1986), 1109–1113 | MR

[6] B. Pavlov, New Zealand J. Math., 25 (1996), 199–216 | MR | Zbl

[7] N. N. Lebedev, Spetsialnye funktsii v matematicheskoi fizike, Nauka, M., 1986