Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 163-177
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose iteration methods for solving the Dirichlet problem in domains with involved geometry. Such problems arise in relation to the problem of optimizing quantum dot and antidot infrared detectors. We estimate the deviation of an approximate solution from the exact solution.
Keywords:
harmonic functionsб Poisson mapб maximum principle.
@article{TMF_2004_141_2_a0,
author = {B. S. Pavlov and V. I. Ryzhii},
title = {Quantum {Dot} and {Antidot} {Infrared} {Photodetectors:} {Iterative} {Methods} for {Solving} {the~Laplace} {Equation} {in~Domains} with {Involved} {Geometry}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--177},
year = {2004},
volume = {141},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/}
}
TY - JOUR AU - B. S. Pavlov AU - V. I. Ryzhii TI - Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 163 EP - 177 VL - 141 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/ LA - ru ID - TMF_2004_141_2_a0 ER -
%0 Journal Article %A B. S. Pavlov %A V. I. Ryzhii %T Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry %J Teoretičeskaâ i matematičeskaâ fizika %D 2004 %P 163-177 %V 141 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/ %G ru %F TMF_2004_141_2_a0
B. S. Pavlov; V. I. Ryzhii. Quantum Dot and Antidot Infrared Photodetectors: Iterative Methods for Solving the Laplace Equation in Domains with Involved Geometry. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 2, pp. 163-177. http://geodesic.mathdoc.fr/item/TMF_2004_141_2_a0/
[1] V. Ryzhii, Semicond. Sci. Technol., 11 (1996), 759–765 | DOI
[2] V. Ryzhii, V. Pipa, I. Khmyrova, V. Mitin, M. Wilander, Japan. J. Appl. Phys. P 2, 39 (2000), L1283–L1285 | DOI
[3] M. Ryzhii, V. Ryzhii, V. Mitin, Microelectronics J., 34 (2003), 411–414 | DOI
[4] I. I. Vorovich, V. M. Aleksandrov, V. A. Babeshko, Neklassicheskie smeshannye zadachi teorii uprugosti, Nauka, M., 1974 | MR | Zbl
[5] V. Gotlib, DAN SSSR, 287:6 (1986), 1109–1113 | MR
[6] B. Pavlov, New Zealand J. Math., 25 (1996), 199–216 | MR | Zbl
[7] N. N. Lebedev, Spetsialnye funktsii v matematicheskoi fizike, Nauka, M., 1986