Thermodynamic Equilibrium in the System of Chaotic Quantized Vortices in a Weakly Imperfect Bose Gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 141-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the example of a weakly imperfect Bose gas, we discuss the mechanism of establishing thermodynamic equilibrium for a chaotic set of quantum vortex filaments. We assume that the dynamics of the Bose condensate is described by the Gross–Pitaevsky equation with an additional noise satisfying the fluctuation-dissipation theorem. In considering a vortex filament as the intersection line of surfaces on which the real and imaginary parts of the order parameter $\psi(\mathbf x,t)$ vanish, we obtain an equation of the Langevin type for elements of the vortex filament with an appropriately transformed random force. The Fokker–Planck equation for the probability density has a solution given by the Gibbs distribution at the temperature of the Bose condensate. In other words, when the Bose condensate is in thermal equilibrium and no other random actions exist, the system of vortices is also in thermal equilibrium.
Mots-clés : quantum vortex filaments, superfluid turbulence.
Keywords: Bose gas, thermodynamic equilibrium
@article{TMF_2004_141_1_a8,
     author = {S. K. Nemirovskii},
     title = {Thermodynamic {Equilibrium} in the {System} of {Chaotic} {Quantized} {Vortices} in {a~Weakly} {Imperfect} {Bose} {Gas}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {141--151},
     year = {2004},
     volume = {141},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a8/}
}
TY  - JOUR
AU  - S. K. Nemirovskii
TI  - Thermodynamic Equilibrium in the System of Chaotic Quantized Vortices in a Weakly Imperfect Bose Gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 141
EP  - 151
VL  - 141
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a8/
LA  - ru
ID  - TMF_2004_141_1_a8
ER  - 
%0 Journal Article
%A S. K. Nemirovskii
%T Thermodynamic Equilibrium in the System of Chaotic Quantized Vortices in a Weakly Imperfect Bose Gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 141-151
%V 141
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a8/
%G ru
%F TMF_2004_141_1_a8
S. K. Nemirovskii. Thermodynamic Equilibrium in the System of Chaotic Quantized Vortices in a Weakly Imperfect Bose Gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a8/

[1] R. J. Donnelly, Quantized Vortices in Helium II, Camb. Univ. Press, Cambridge, 1991

[2] W. H. Zurek, Phys. Rep., 276:4 (1996), 177 ; E-print cond-mat/9607135 | DOI

[3] S. K. Nemirovskii, W. Fiszdon, Rev. Mod. Phys., 67 (1995), 37 | DOI

[4] L. P. Pitaevskiii, ZhETF, 35 (1958), 408

[5] E. P. Gross, Nuovo Cimento, 20 (1961), 454 | DOI | MR | Zbl

[6] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys., 49 (1972), 435 | DOI

[7] A. L. Fetter, Phys. Rev., 151 (1966), 100 | DOI

[8] L. M. Pismen, Vortices in Nonlinear Fields, Clarendon Press, Oxford, 1999 | Zbl

[9] G. K. Batchelor, An Introduction to Fluid Mechanics, Camb. Univ. Press, Cambridge, 1967 | MR | Zbl

[10] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1992 | MR