A Simple Cluster Model for the Liquid–Glass Transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 131-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the classical distribution-function approach to simple liquids, we estimate the orientational interaction between clusters consisting of a particle and its nearest neighbors. We show that there are density and temperature ranges where the interaction changes sign as a function of the cluster radius. On this basis, the corresponding model of interacting cubic and icosahedral clusters (of the type of a spin glass model) is proposed and solved in the replica-symmetric approximation. We show that the glass order parameter grows continuously on cooling and the replica-symmetry-breaking temperature can be identified with the glass transition temperature. We also show that on cooling a system of particles with a Lennard–Jones interaction, cubic clusters freeze first. The transition temperature for icosahedral clusters is somewhat lower; therefore, the cubic structure of the short-range order is more likely in a Lennard–Jones glass near transition.
Keywords: short-range order, local structure of liquid
Mots-clés : orientational glass.
@article{TMF_2004_141_1_a7,
     author = {V. N. Ryzhov and E. E. Tareeva and T. I. Shchelkacheva and N. M. Shchelkachev},
     title = {A~Simple {Cluster} {Model} for the {Liquid{\textendash}Glass} {Transition}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {131--140},
     year = {2004},
     volume = {141},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a7/}
}
TY  - JOUR
AU  - V. N. Ryzhov
AU  - E. E. Tareeva
AU  - T. I. Shchelkacheva
AU  - N. M. Shchelkachev
TI  - A Simple Cluster Model for the Liquid–Glass Transition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 131
EP  - 140
VL  - 141
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a7/
LA  - ru
ID  - TMF_2004_141_1_a7
ER  - 
%0 Journal Article
%A V. N. Ryzhov
%A E. E. Tareeva
%A T. I. Shchelkacheva
%A N. M. Shchelkachev
%T A Simple Cluster Model for the Liquid–Glass Transition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 131-140
%V 141
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a7/
%G ru
%F TMF_2004_141_1_a7
V. N. Ryzhov; E. E. Tareeva; T. I. Shchelkacheva; N. M. Shchelkachev. A Simple Cluster Model for the Liquid–Glass Transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 131-140. http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a7/

[1] V. V. Brazhkin, S. V. Buldyrev, V. N. Ryzhov, H. E. Stanley (eds.), New Kinds of Phase Transitions: Transformationsin Disordered Substances, Proc. NATO Advanced Research Workshop, Kluwer, Dordrecht, 2002

[2] G. Parisi, Glasses, replicas and all that, E-print cond-mat/0301157

[3] L. F. Cugliandolo, Dynamics of glassy systems, E-print cond-mat/0210312

[4] M. Mezard, G. Parisi, M. A. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore, 1987 | MR | Zbl

[5] T. R. Kirkpatrick, P. G. Wolynes, Phys. Rev. B, 36 (1987), 8552 | DOI

[6] T. R. Kirkpatrick, D. Thirumalai, Phys. Rev. B, 37 (1988), 5342 | DOI

[7] Ya. I. Frenkel, Kineticheskaya teoriya zhidkostei, Nauka, M., 1975

[8] F. C. Frank, Proc. R Soc. A, 215 (1952), 43 | DOI

[9] P. J. Steinhardt, D. R. Nelson, M. Ronchetti, Phys. Rev. B, 28 (1983), 784 | DOI

[10] A. C. Mitus, F. Smolei, H. Hahn, A. Z. Patashinski, Europhys. Lett., 32 (1995), 777 | DOI

[11] V. N. Ryzhov, J. Phys.: Condens. Matter, 2 (1990), 5855 ; В. Н. Рыжов, ТМФ, 80 (1989), 107 | DOI

[12] D. R. Nelson, J. Toner, Phys. Rev. B, 24 (1981), 363 | DOI

[13] A. D. J. Haymet, Phys. Rev. B, 27 (1993), 1725 | DOI

[14] A. S. Mitus, A. Z. Patashinskii, ZhETF, 80 (1981), 1554

[15] A. Z. Patashinski, M. A. Ratner, J. Chem. Phys., 106 (1997), 7249 | DOI

[16] V. N. Ryzhov, E. E. Tareyeva, J. Phys. C, 21 (1988), 819 | DOI

[17] V. N. Ryzhov, E. E. Tareyeva, Phys. Rev. B, 51 (1995), 8789 | DOI

[18] V. N. Ryzhov, E. E. Tareyeva, Physica A, 314 (2002), 396 | DOI

[19] V. N. Ryzhov, E. E. Tareeva, TMF, 73 (1987), 463 ; 92 (1992), 331 | MR | MR

[20] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Nauka, M., 1989 | MR

[21] C. J. Bradley, A. P. Cracknell, The Mathematical Theory of Symmetry in Solids, Clarendon Press, Oxford, 1972 | MR | Zbl

[22] N. V. Gribova, V. N. Ryzhov, T. I. Schelkacheva, E. E. Tareyeva, Phys. Lett. A, 315 (2003), 467 | DOI | Zbl

[23] D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett., 32 (1975), 1972; S. Kirkpatrick, D. Sherrington, Phys. Rev. B, 17 (1978), 4384 | DOI

[24] T. I. Schelkacheva, Pisma v ZhETF, 76 (2002), 434

[25] E. A. Lutchinskaia, V. N. Ryzhov, E. E. Tareyeva, J. Phys. C, 17 (1984), L665 ; Е. А. Лутчинская, В. Н. Рыжов, Е. Е. Тареева, ТМФ, 67 (1986), 463 | DOI

[26] J. R. L. Almeida, D. J. Thouless, J. Phys. A, 11 (1978), 983 | DOI