Rigorous Formulation of a $2D$ Conformal Model in the Fock–Krein Space: Construction of the Global $\operatorname{Op}J^*$-Algebra of Fields and Currents
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 60-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the formalism of the $2D$ massless scalar field model in an indefinite space of the Fock–Krein type as a basis for constructing a rigorous formulation of $2D$ quantum conformal theories. We show that the sought construction is a several-stage procedure whose central block is the construction of a new type of representation of the Virasoro algebra. We develop the first stage of this procedure, which is to construct a special global algebra of fields and currents generated by exponential generators. We obtain a system of commutation relations for the Wick-squared currents used in the definition of the Virasoro generators. We prove the existence of Wick exponentials of the current given by operator-valued generalized functions; the sought global algebra is rigorously defined as the algebra of current and field, Wick and normal exponentials on a common dense invariant domain in a Fock–Krein space.
Keywords: Fock–Krein space, conformal theory, field algebra.
@article{TMF_2004_141_1_a3,
     author = {S. S. Horuzhy},
     title = {Rigorous {Formulation} of a $2D$ {Conformal} {Model} in the {Fock{\textendash}Krein} {Space:} {Construction} of the {Global} $\operatorname{Op}J^*${-Algebra} of {Fields} and {Currents}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {60--79},
     year = {2004},
     volume = {141},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a3/}
}
TY  - JOUR
AU  - S. S. Horuzhy
TI  - Rigorous Formulation of a $2D$ Conformal Model in the Fock–Krein Space: Construction of the Global $\operatorname{Op}J^*$-Algebra of Fields and Currents
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 60
EP  - 79
VL  - 141
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a3/
LA  - ru
ID  - TMF_2004_141_1_a3
ER  - 
%0 Journal Article
%A S. S. Horuzhy
%T Rigorous Formulation of a $2D$ Conformal Model in the Fock–Krein Space: Construction of the Global $\operatorname{Op}J^*$-Algebra of Fields and Currents
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 60-79
%V 141
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a3/
%G ru
%F TMF_2004_141_1_a3
S. S. Horuzhy. Rigorous Formulation of a $2D$ Conformal Model in the Fock–Krein Space: Construction of the Global $\operatorname{Op}J^*$-Algebra of Fields and Currents. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 60-79. http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a3/

[1] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl

[2] G. Moore, N. Seiberg, Commun. Math. Phys., 123 (1989), 177–254 | DOI | MR | Zbl

[3] P. Furlan, G. M. Sotkov, I. T. Todorov, Riv. Nuovo Cimento, 12:6 (1989), 1–202 | DOI | MR

[4] G. Felder, Nucl. Phys. B, 317 (1989), 312–348 | DOI | MR

[5] G. Morchio, D. Pierotti, F. Strocchi, J. Math. Phys., 31 (1990), 1467–1477 | DOI | MR | Zbl

[6] D. Pierotti, Lett. Math. Phys., 15 (1988), 219–230 | DOI | MR | Zbl

[7] S. S. Horuzhy, A. V. Voronin, J. Math. Phys., 33 (1992), 2823–2841 | DOI | MR | Zbl

[8] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[9] A. G. Smirnov, M. A. Solovev, TMF, 123 (2000), 355–373 | DOI | MR | Zbl

[10] A. Jaffe, Phys. Rev., 158 (1967), 1454–1461 | DOI

[11] R. Striter, A. Vaitman, $PCT$, spin i statistika i vse takoe, Nauka, M., 1966

[12] K. Yu. Dadashyan, S. S. Khoruzhii, TMF, 54 (1983), 57–77 | MR | Zbl