Integrable Systems Obtained by Puncture Fusion from Rational and Elliptic Gaudin Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 38-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the procedure for puncture fusion, we obtain new integrable systems with poles of orders higher than one in the Lax operator matrix and consider the Hamiltonians, symplectic structure, and symmetries of these systems. Using the Inozemtsev limit procedure, we find a Toda-like system in the elliptic case having nontrivial commutation relations between the phase-space variables.
Keywords: integrable systems, Hitchin systems, Lax operator, rational Gaudin models, elliptic Gaudin models, Inozemtsev limit, puncture fusion.
@article{TMF_2004_141_1_a2,
     author = {Yu. B. Chernyakov},
     title = {Integrable {Systems} {Obtained} by {Puncture} {Fusion} from {Rational} and {Elliptic} {Gaudin} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--59},
     year = {2004},
     volume = {141},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a2/}
}
TY  - JOUR
AU  - Yu. B. Chernyakov
TI  - Integrable Systems Obtained by Puncture Fusion from Rational and Elliptic Gaudin Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 38
EP  - 59
VL  - 141
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a2/
LA  - ru
ID  - TMF_2004_141_1_a2
ER  - 
%0 Journal Article
%A Yu. B. Chernyakov
%T Integrable Systems Obtained by Puncture Fusion from Rational and Elliptic Gaudin Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 38-59
%V 141
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a2/
%G ru
%F TMF_2004_141_1_a2
Yu. B. Chernyakov. Integrable Systems Obtained by Puncture Fusion from Rational and Elliptic Gaudin Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 38-59. http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a2/

[1] M. Gaudin, J. Physique, 37 (1976), 1087 | DOI | MR

[2] N. Nekrasov, Commun. Math. Phys., 180 (1996), 587 ; E-print hep-th/9503157 | DOI | MR | Zbl

[3] B. Enriques, V. Rubtsov, Math. Res. Lett., 3 (1996), 343 | DOI | MR

[4] A. M. Levin, M. A. Olshanetsky, Hierarchies of isomonodromic deformations and Hitchin systems, E-print hep-th/9709207 | MR

[5] N. Hitchin, Duke Math. J., 54:1 (1987), 91 | DOI | MR | Zbl

[6] A. Beauville, Acta Math., 164:3/4 (1990), 211 | DOI | MR | Zbl

[7] A. Chervov, D. Talalaev, Hitchin systems on singular curves. II: Gluing subschemes, E-print hep-th/0309059 | MR

[8] A. V. Zotov, Yu. B. Chernyakov, TMF, 129:2 (2001), 258 | DOI | MR | Zbl

[9] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl

[10] E. D'Hoker, D. H. Phong, Lectures on supersymmetric Yang–Mills theory and integrable systems, E-print hep-th/9912271 | MR

[11] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl