Factorization of the Loop Algebra and Integrable Toplike Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 3-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With any Lie algebra of Laurent series with coefficients in a semisimple Lie algebra and its decomposition into a sum of the subalgebra consisting of the Taylor series and a complementary subalgebra, we associate a hierarchy of integrable Hamiltonian nonlinear ODEs. In the case of the $so(3)$ Lie algebra, our scheme covers all classical integrable cases in the Kirchhoff problem of the motion of a rigid body in an ideal fluid. Moreover, the construction allows generating integrable deformations for known integrable models.
Keywords: integrable nonlinear ODE, loop algebra.
Mots-clés : Lax pair
@article{TMF_2004_141_1_a0,
     author = {I. Z. Golubchik and V. V. Sokolov},
     title = {Factorization of the {Loop} {Algebra} and {Integrable} {Toplike} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--23},
     year = {2004},
     volume = {141},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a0/}
}
TY  - JOUR
AU  - I. Z. Golubchik
AU  - V. V. Sokolov
TI  - Factorization of the Loop Algebra and Integrable Toplike Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 3
EP  - 23
VL  - 141
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a0/
LA  - ru
ID  - TMF_2004_141_1_a0
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%A V. V. Sokolov
%T Factorization of the Loop Algebra and Integrable Toplike Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 3-23
%V 141
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a0/
%G ru
%F TMF_2004_141_1_a0
I. Z. Golubchik; V. V. Sokolov. Factorization of the Loop Algebra and Integrable Toplike Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 141 (2004) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/TMF_2004_141_1_a0/

[1] I. V. Cherednik, Funkts. analiz i ego prilozh., 19:3 (1985), 36–52 | MR | Zbl

[2] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego prilozh., 16:3 (1982), 1–29 | MR | Zbl

[3] I. Z. Golubchik, V. V. Sokolov, TMF, 120:2 (1999), 248–255 | DOI | MR | Zbl

[4] I. Z. Golubchik, V. V. Sokolov, Funkts. analiz i ego prilozh., 36:3 (2002), 9–19 | DOI | MR | Zbl

[5] V. V. Sokolov, Dokl. RAN, 397:3 (2004), 321–324 | MR

[6] V. V. Sokolov, TMF, 129:1 (2001), 31–37 | DOI | MR | Zbl

[7] V. V. Sokolov, “A Generalized Kowalevski Top: new integrable cases on $e(3)$ and $so(4)$”, Kowalevski Property, CRM Proceedings and Lecture Notes, 32, ed. V. Kuznetsov, Am. Math. Soc., Providence, RI, 2002, 307–313 | DOI | MR | Zbl

[8] V. V. Sokolov, A. V. Tsyganov, TMF, 131:1 (2002), 118–125 | DOI | MR | Zbl

[9] A. I. Bobenko, Funkts. analiz i ego prilozh., 20:1 (1986), 64–66 | MR | Zbl

[10] A. V. Bolsinov, A. V. Borisov, Matem. zametki, 72:1 (2002), 11–34 | DOI | MR | Zbl

[11] A. V. Mikhailov, “The reduction problem and the inverse scattering method”, Solitons, Topics in Current Physics, 17, eds. R. Bullough, P. Caudrey, Springer, New York, 1980, 243–285 | DOI | MR

[12] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, RKhD, Izhevsk, 2003

[13] E. K. Sklyanin, O polnoi integriruemosti uravneniya Landau–Lifshitsa, Preprint LOMI E-3, LOMI, L., 1979

[14] A. V. Mikhailov, A. B. Shabat, Phys. Lett. A, 116 (1986), 191–194 | DOI | MR

[15] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 122 (1989), 321–354 | DOI | MR

[16] A. V. Borisov, S. I. Mamaev, V. V. Sokolov, Dokl. RAN, 381:5 (2001), 614–615 | MR

[17] I. V. Komarov, V. V. Sokolov, A. V. Tsiganov, J. Phys. A, 36 (2003), 8035–8047 | DOI | MR

[18] A. V. Tsyganov, TMF, 141:1 (2004), 24–37 | DOI | MR