$(2+1)$-Dimensional Gauge Model with Electrically Charged Fermions
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 396-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a $(2+1)$-dimensional gauge theory with a nonzero fermion density and an initial Chern–Simons topological term, whose Lorentz invariance is spontaneously broken in a certain Lorentz reference frame by the generation of a constant homogenous magnetic field. We propose interpreting the number $\eta=\pm1$, which characterizes the two nonequivalent representations of Dirac matrices in $2+1$ dimensions, as a quantum number that explicitly describes the spin of the fermion. In particular, this interpretation allows determining the vacuum state of the model in a constant homogenous magnetic field as the state whose fermion and spin numbers are equal to zero.
Mots-clés : fermion charge
Keywords: spin, Chern–Simons topological term, spontaneous symmetry breaking, effective Lagrangian.
@article{TMF_2004_140_3_a3,
     author = {V. R. Khalilov},
     title = {A~$(2+1)${-Dimensional} {Gauge} {Model} with {Electrically} {Charged} {Fermions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {396--409},
     year = {2004},
     volume = {140},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a3/}
}
TY  - JOUR
AU  - V. R. Khalilov
TI  - A $(2+1)$-Dimensional Gauge Model with Electrically Charged Fermions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 396
EP  - 409
VL  - 140
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a3/
LA  - ru
ID  - TMF_2004_140_3_a3
ER  - 
%0 Journal Article
%A V. R. Khalilov
%T A $(2+1)$-Dimensional Gauge Model with Electrically Charged Fermions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 396-409
%V 140
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a3/
%G ru
%F TMF_2004_140_3_a3
V. R. Khalilov. A $(2+1)$-Dimensional Gauge Model with Electrically Charged Fermions. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 396-409. http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a3/

[1] A. M. J. Schakel, G. W. Semenoff, Phys. Rev. Lett., 66 (1991), 2653 | DOI

[2] R. E. Prange, S. M. Girvin (eds.), The Quantum Hall Effect, Springer, New York, 1990 | MR

[3] F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore, 1990 | MR | Zbl

[4] A. M. J. Schakel, Phys. Rev. D, 43 (1991), 1428 | DOI

[5] A. Neagu, A. M. J. Schakel, Phys. Rev. D, 48 (1993), 1785 | DOI

[6] Y. Hosotani, Phys. Rev. D, 51 (1995), 2022 ; D. Wesolowski, Y. Hosotani, Phys. Lett. B, 354 (1995), 396 ; E-print hep-th/9505113 | DOI | DOI

[7] Y. Hosotani, Phys. Lett. B, 319 (1993), 332 ; ; Phys. Rev. D, 51 (1995), 2022 ; E-print hep-th/9308045E-print hep-th/9402096 | DOI | DOI

[8] S. Deser, R. Jackiw, S. Templeton, Phys. Rev. Lett., 48 (1982), 975 | DOI

[9] D. Boyanovsky, R. Blankenbecler, R. Yahalom, Nucl. Phys. B, 270 (1986), 483 | DOI

[10] V. R. Khalilov, TMF, 129 (2001), 55 | DOI | Zbl

[11] I. M. Ternov, V. V. Mikhailin, V. R. Khalilov, Sinkhrotronnoe izluchenie i ego primeneniya, Izd. MGU, M., 1985

[12] V. I. Ritus, Tr. FIAN, 111, 1979, 5 | MR

[13] V. R. Khalilov, TMF, 125 (2000), 132 | DOI | MR | Zbl

[14] N. N. Bogolyubov, D. V. Shirkov, Kvantovye polya, Nauka, M., 1980 | MR | Zbl

[15] A. N. Redlich, Phys. Rev. Lett., 52 (1984), 18 | DOI | MR

[16] S. Coleman, B. Hill, Phys. Lett. B, 159 (1985), 184 | DOI

[17] T. Bernstein, A. Lee, Phys. Rev. D, 32 (1985), 1020 | DOI

[18] K. Ishikawa, Phys. Rev. Lett., 53 (1984), 1615 ; Phys. Rev. D, 31 (1985), 1432 | DOI | MR | DOI | MR