Gauge-Invariant $U(1)$ Model in the Axial Gauge on the Noncommutative Plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 388-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a gauge-invariant $U(1)$ model on the noncommutative spacelike plane, a description of a scalar particle, in the axial gauge. Using this gauge makes the absence of nonintegrable infrared singularities and the existence of the smooth commutative limit obvious.
Keywords: noncommutative field theory, UV–IR mixing.
@article{TMF_2004_140_3_a2,
     author = {A. A. Slavnov},
     title = {Gauge-Invariant $U(1)$ {Model} in the {Axial} {Gauge} on the {Noncommutative} {Plane}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--395},
     year = {2004},
     volume = {140},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a2/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - Gauge-Invariant $U(1)$ Model in the Axial Gauge on the Noncommutative Plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 388
EP  - 395
VL  - 140
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a2/
LA  - ru
ID  - TMF_2004_140_3_a2
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T Gauge-Invariant $U(1)$ Model in the Axial Gauge on the Noncommutative Plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 388-395
%V 140
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a2/
%G ru
%F TMF_2004_140_3_a2
A. A. Slavnov. Gauge-Invariant $U(1)$ Model in the Axial Gauge on the Noncommutative Plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 388-395. http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a2/

[1] T. Filk, Phys. Lett. B, 376 (1996), 53 | DOI | MR | Zbl

[2] T. Krajewsky, R. Wulkenhaar, Int. J. Mod. Phys. A, 15 (2000), 1011 | DOI | MR

[3] S. Minwalla, M. Van Raamsdonk, N. Seiberg, JHEP, 9906 (1999), 007 | DOI | MR

[4] I. Ya. Aref'eva, D. M. Belov, A. S. Koshelev, Phys. Lett. B, 476 (2000), 431 | DOI | MR | Zbl

[5] H. Grosse, T. Krajewski, R. Wulkenhaar, Renormalization of noncommutative Yang–Mills theories: A simple example, E-print hep-th/0001182

[6] C. P. Martin, D. Sanchez-Ruiz, Phys. Rev. Lett., 83 (1999), 476 | DOI | MR | Zbl

[7] M. Hayakawa, Phys. Lett. B, 478 (2000), 394 | DOI | MR | Zbl

[8] A. Matusis, L. Susskind, N. Tombas, JHEP, 0012 (2000), 002 | DOI | MR

[9] I. Ya. Aref'eva, D. M. Belov, A. S. Koshelev, O. A. Rytchkov, Nucl. Phys. B, 406 (1993), 90 | DOI

[10] I. Chepelev, R. Roiban, JHEP, 0103 (2001), 001 | DOI | MR

[11] M. M. Sheikh-Jabbari, JHEP, 9905 (1999), 015 | DOI | MR

[12] D. Zanon, Phys. Lett. B, 502 (2001), 265 | DOI | MR | Zbl

[13] I. Jack, D. R. T. Jones, New J. Phys., 31 (2001), 19 | DOI | MR

[14] H. O. Girotti, M. Gomes, V. O. Rivelles, A. J. da Silva, Nucl. Phys. B, 587 (2000), 299 | DOI | MR | Zbl

[15] A. F. Ferrari, H. O. Girotti, M. Gomes et al., Phys. Lett. B, 577 (2003), 83 | DOI | MR | Zbl

[16] A. A. Slavnov, Phys. Lett. B, 565 (2003), 246 | DOI | MR | Zbl