Spontaneous Generation of Effective Interaction in a Renormalizable Quantum Field Theory Model
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 367-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the theory of a massless scalar field $\phi$ with the $g\phi^3$ coupling in a six-dimensional space. We use Bogoliubov's method of quasiaverages to study the possibility of a breaking of the original scaling symmetry and of the corresponding spontaneous generation of the effective $G\phi^4$ coupling. We show that the linearized compensation equation for the form factor of this coupling has a nontrivial solution through the third-order approximation. In the same approximation, the Bethe–Salpeter equation for a massless scalar bound state of two fields $\phi$ also has a solution. Matching the values of the form factor and the scalar field mass $m$ at zero leads to a unique solution that gives a relation between the parameters of the$g \phi^3$ coupling and the parameters $G$ and $m$. We argue in favor of the stability of the nontrivial solution obtained.
Keywords: effective coupling, quantum field theory, Bogoliubov's method of quasiaverages, nontrivial solution.
Mots-clés : compensation equation
@article{TMF_2004_140_3_a1,
     author = {B. A. Arbuzov},
     title = {Spontaneous {Generation} of {Effective} {Interaction} in {a~Renormalizable} {Quantum} {Field} {Theory} {Model}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--387},
     year = {2004},
     volume = {140},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a1/}
}
TY  - JOUR
AU  - B. A. Arbuzov
TI  - Spontaneous Generation of Effective Interaction in a Renormalizable Quantum Field Theory Model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 367
EP  - 387
VL  - 140
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a1/
LA  - ru
ID  - TMF_2004_140_3_a1
ER  - 
%0 Journal Article
%A B. A. Arbuzov
%T Spontaneous Generation of Effective Interaction in a Renormalizable Quantum Field Theory Model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 367-387
%V 140
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a1/
%G ru
%F TMF_2004_140_3_a1
B. A. Arbuzov. Spontaneous Generation of Effective Interaction in a Renormalizable Quantum Field Theory Model. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 367-387. http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a1/

[1] N. N. Bogolubov, Physica (Suppl.), 26 (1960), 1 | DOI

[2] N. N. Bogolyubov, Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint OIYaI D-781, OIYaI, Dubna, 1961

[3] B. A. Arbuzov, A. N. Tavkhelidze, R. N. Faustov, DAN SSSR, 139 (1961), 345 | Zbl

[4] P. W. Higgs, Phys. Lett., 12 (1964), 132 | DOI

[5] R. S. Chivukula, M. Narain, J. Wormsley, Phys. Rev. D, 66 (2002), 929

[6] B. A. Arbuzov, Muon $g-2$ anomaly and extra interaction of composite Higgs in dynamically broken electroweak theory, Preprint NPI MSU 2001-35/675, NPI, Moscow, 2001

[7] B. A. Arbuzov, “Composite 115 GeV Higgs in a dynamically broken electroweak theory”, Proc. of the IX Conference on Supersymmetry and Unification of Fundamental Interactions, eds. D. I. Kazakov, A. V. Gladyshev, World Scientific, Singapore, 2002, 273 | DOI | Zbl

[8] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. T. 1. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[10] B. A. Arbuzov, A. T. Filippov, ZhETF, 49 (1965), 990 | MR

[11] B. A. Arbuzov, A. T. Filippov, Nuovo Cimento, 38 (1965), 796 | DOI | MR

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 1. Gipergeometricheskaya funktsiya, funktsiya Lezhandra, Nauka, M., 1965 | MR

[13] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. T. 3. Dopolnitelnye glavy, Nauka, M., 1986 | MR

[14] J. Goldstone, Nuovo Cimento, 19 (1961), 154 | DOI | MR | Zbl