Hochschild Cohomologies of the Algebra of Smooth Functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 355-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the previously developed technique using the Laplace transformation of distributions with compact support, we calculate the Hochschild cohomologies of the algebra of smooth functions on a finite-dimensional real vector space with coefficients in the adjoint representation.
Keywords: associative algebra, coboundary operator, complex, exponential map.
Mots-clés : bimodule
@article{TMF_2004_140_3_a0,
     author = {V. V. Zharinov},
     title = {Hochschild {Cohomologies} of the {Algebra} of {Smooth} {Functions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--366},
     year = {2004},
     volume = {140},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Hochschild Cohomologies of the Algebra of Smooth Functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 355
EP  - 366
VL  - 140
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a0/
LA  - ru
ID  - TMF_2004_140_3_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Hochschild Cohomologies of the Algebra of Smooth Functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 355-366
%V 140
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a0/
%G ru
%F TMF_2004_140_3_a0
V. V. Zharinov. Hochschild Cohomologies of the Algebra of Smooth Functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 3, pp. 355-366. http://geodesic.mathdoc.fr/item/TMF_2004_140_3_a0/

[1] G. Hochschild, Ann. Math., 46:1 (1948), 58–67 | DOI | MR

[2] C. Chevalley, E. Eilenberg, Trans. Am. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl

[3] M. Gerstenhaber, Ann. Math., 79:1 (1964), 59–103 ; 84:1 (1966), 1–19 ; 88:1 (1968), 1–34 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] M. Gerstenhaber, Ann. Math., 99 (1974), 257–276 | DOI | MR | Zbl

[5] F. Baen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys., 111 (1978), 61–110 ; 111–151 | DOI | MR

[6] G. Dito, D. Sternheimer, “Deformation quantization: genesis, developments and metamorphoses”, Deformation Quantization, IRMA Lect. in Math. and Theor. Phys., 1, ed. G. Halbout, de Gruyter, Berlin, 2002, 9–54 ; E-print math.QA/0201168 | MR | Zbl

[7] J. L. Taylor, Adv. Math., 9 (1972), 137–182 | DOI | MR | Zbl

[8] V. V. Zharinov, TMF, 128:2 (2001), 147–160 ; 136:2 (2003), 179–196 | DOI | MR | Zbl | DOI | MR | Zbl

[9] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR

[10] J. Vey, Comment. Math. Helv., 50 (1975), 421–454 ; S. Gutt, Lett. Math. Phys., 39 (1997), 157–162 | DOI | MR | Zbl | DOI | MR | Zbl