The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 310-328

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a one-dimensional single-center scattering problem on the entire axis with the original potential $\alpha|x|^{-1}$. This problem reduces to seeking admissible self-adjoint extensions. Using conservation laws at the singularity point as necessary conditions and taking the analytic structure of fundamental solutions into account allows obtaining exact expressions for the wave functions (i.eḟor the boundary conditions), scattering coefficients, singular corrections to the potential, and also the corresponding spectrum of bound states. It then turns out that pointlike $\delta$-corrections to the potential must necessarily be involved for any choice of the admissible self-adjoint extension. The form of these corrections corresponds to the form of the renormalization terms obtained in quantum electrodynamics. The proposed method therefore indicates a 1:1 relation between boundary conditions, scattering coefficients, and $\delta$-like additions to the potential and demonstrates the general possibilities arising in the analysis of self-adjoint extensions of the corresponding Hamilton operator. In the part pertaining to the renormalization theory, it can be considered a generalization of the renormalization method of Bogoliubov, Parasyuk, and Hepp.
Mots-clés : Coulomb interaction
Keywords: point interaction, scattering problem, self-adjoint extensions, renormalizations.
@article{TMF_2004_140_2_a9,
     author = {V. S. Mineev},
     title = {The {Physics} of {Self-Adjoint} {Extensions:} {One-Dimensional} {Scattering} {Problem} for the {Coulomb} {Potential}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {310--328},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a9/}
}
TY  - JOUR
AU  - V. S. Mineev
TI  - The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 310
EP  - 328
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a9/
LA  - ru
ID  - TMF_2004_140_2_a9
ER  - 
%0 Journal Article
%A V. S. Mineev
%T The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 310-328
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a9/
%G ru
%F TMF_2004_140_2_a9
V. S. Mineev. The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 310-328. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a9/