Relation Between a Pole of the Scattering Matrix and the Transmission and Reflection Coefficients in Scattering in a Quantum Waveguide
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 303-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use an example to illustrate how a pole with a small imaginary part can affect the transmission and reflection coefficients in the scattering in a quantum waveguide.
Keywords: scattering matrix, resonances
Mots-clés : quantum billiard.
@article{TMF_2004_140_2_a8,
     author = {A. A. Arsen'ev},
     title = {Relation {Between} {a~Pole} of the {Scattering} {Matrix} and the {Transmission} and {Reflection} {Coefficients} in {Scattering} in {a~Quantum} {Waveguide}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {303--309},
     year = {2004},
     volume = {140},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a8/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - Relation Between a Pole of the Scattering Matrix and the Transmission and Reflection Coefficients in Scattering in a Quantum Waveguide
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 303
EP  - 309
VL  - 140
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a8/
LA  - ru
ID  - TMF_2004_140_2_a8
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T Relation Between a Pole of the Scattering Matrix and the Transmission and Reflection Coefficients in Scattering in a Quantum Waveguide
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 303-309
%V 140
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a8/
%G ru
%F TMF_2004_140_2_a8
A. A. Arsen'ev. Relation Between a Pole of the Scattering Matrix and the Transmission and Reflection Coefficients in Scattering in a Quantum Waveguide. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 303-309. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a8/

[1] P. Mavropoulos, N. Papanikolaou, P. H. Dederichs, A KKR Green formalism for ballistic transport, E-print cond-mat/0306604

[2] F.-M. Dittes, Phys. Rep., 339 (2000), 215–316 | DOI | MR

[3] A. A. Arsenev, TMF, 134:3 (2003), 341–352 | DOI | MR | Zbl

[4] A. A. Arsenev, Matem. sb., 194:1 (2003), 3–22 | DOI | MR | Zbl

[5] J. Sjöstrand, M. Zworski, J. Am. Math. Soc., 4 (1991), 729–769 | DOI | MR | Zbl

[6] H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, I. Rotter, Phys. Rev. E, 65 (2002), 066211-1–066211-9 | DOI

[7] W. Porod, Z. Shao, C. S. Lent, Appl. Phys. Lett., 61:11 (1992), 1350–1352 | DOI