Schrödinger Operator Levels for a Crystal Film with a Nonlocal Potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 297-302
Cet article a éte moissonné depuis la source Math-Net.Ru
For a crystal film, we consider the Schrödinger operator defined on Bloch functions (with respect to two variables) in a cell. The potential is the sum of two small terms: a function decreasing with respect to the third variable and an operator of rank one. We prove the existence of two levels (eigenvalues or resonances) near the parameter value $E=0$ and obtain their asymptotic.
Keywords:
Schrödinger operator, periodic potential, nonlocal potential, eigenvalue, resonance, asymptotic behavior.
@article{TMF_2004_140_2_a7,
author = {M. S. Smetanina and Yu. P. Chuburin},
title = {Schr\"odinger {Operator} {Levels} for a {Crystal} {Film} with {a~Nonlocal} {Potential}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--302},
year = {2004},
volume = {140},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a7/}
}
TY - JOUR AU - M. S. Smetanina AU - Yu. P. Chuburin TI - Schrödinger Operator Levels for a Crystal Film with a Nonlocal Potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 297 EP - 302 VL - 140 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a7/ LA - ru ID - TMF_2004_140_2_a7 ER -
M. S. Smetanina; Yu. P. Chuburin. Schrödinger Operator Levels for a Crystal Film with a Nonlocal Potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 297-302. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a7/
[1] Dzh. Zaiman, Printsipy teorii tverdogo tela, Mir, M., 1974
[2] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR
[3] V. Kheine, M. Koen, D. Ueir, Teoriya psevdopotentsiala, Mir, M., 1973
[4] R. R. Gadylshin, TMF, 132 (2002), 97 | DOI | MR | Zbl
[5] Yu. P. Chuburin, Matem. zametki, 52 (1992), 138 | MR
[6] Yu. P. Chuburin, TMF, 72 (1987), 120 | MR
[7] S. Albeverio, F. Gestezi, R. Khöeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR
[8] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR
[9] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR