Bell's Inequality for Two-Particle Mixed Spin States
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 284-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive the Bell–Clauser–Horne–Shimony–Holt inequalities for two-particle mixed spin states both in the conventional quantum mechanics and in the hidden-variables theory. We consider two cases for the vectors $\vec a$, $\vec b$, $\vec c$, $\vec d$ specifying the axes onto which the particle spins of a correlated pair are projected. In the first case, all four vectors lie in the same plane, and in the second case, they are oriented arbitrarily. We compare the obtained inequalities and show that the difference between the predictions of the two theories is less for mixed states than for pure states. We find that the inequalities obtained in quantum mechanics and the hidden-variables theory coincide for some special states, in particular, for the mixed states formed by pure factorable states. We discuss the points of similarity and difference between the uncertainty relations and Bell's inequalities. We list all the states for which the right-hand side of the Bell–Clauser–Horne–Shimony–Holt inequality is identically equal to zero.
Keywords: quantum mechanics, hidden variables, Bell inequality, mixed states, spin states, quantum tomography.
@article{TMF_2004_140_2_a6,
     author = {V. A. Andreev and V. I. Man'ko},
     title = {Bell's {Inequality} for {Two-Particle} {Mixed} {Spin} {States}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {284--296},
     year = {2004},
     volume = {140},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a6/}
}
TY  - JOUR
AU  - V. A. Andreev
AU  - V. I. Man'ko
TI  - Bell's Inequality for Two-Particle Mixed Spin States
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 284
EP  - 296
VL  - 140
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a6/
LA  - ru
ID  - TMF_2004_140_2_a6
ER  - 
%0 Journal Article
%A V. A. Andreev
%A V. I. Man'ko
%T Bell's Inequality for Two-Particle Mixed Spin States
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 284-296
%V 140
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a6/
%G ru
%F TMF_2004_140_2_a6
V. A. Andreev; V. I. Man'ko. Bell's Inequality for Two-Particle Mixed Spin States. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 284-296. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a6/

[1] W. Heisenberg, Z. Phys., 43 (1927), 172 | DOI | Zbl

[2] J. S. Bell, Physics, 1 (1964), 195

[3] A. Yu. Khrennikov, Nekolmogorovskie teorii veroyatnostei i kvantovaya fizika, Fizmatlit, M., 2003; A. S. Holevo, Statistical Structure of Quantum Theory, Springer, Berlin–Heidelberg, 2001 ; L. Accardi, Yu. G. Lu, I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin–Heidelberg, 2002 ; I. Volovich, Ya. Volovich, Bell's theorem and random variables, ; A. Khrennikov, I. Volovich, Einstein, Podolsky and Rosen versus Bohm and Bell, ; A. Khrennikov, Found. Phys., 32 (2002), 1159 E-print quant-ph/0009058E-print quant-ph/0211078 | Zbl | MR | Zbl | DOI | MR

[4] A. Khrennikov, Contextual approach to quantum mechanics and the theory of the fundamental prespace, , V. 1 E-print quant-ph/0306003 | MR

[5] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Phys. Rev. Lett., 23 (1969), 880 | DOI

[6] H. F. Hofmann, S. Takeuchi, Phys. Rev. A, 68 (2003), 032103 ; E-print quant-ph/0212090 | DOI | MR

[7] R. F. Werner, Phys. Rev. A, 40 (1989), 4277 | DOI

[8] E. H. Kennard, Z. Phys., 44 (1927), 326 | DOI | Zbl

[9] G. Veil, Teoriya grupp i kvantovaya mekhanika, Nauka, M., 1986 | MR

[10] V. V. Dodonov, V. I. Manko, Tr. FIAN, 183, 1987, 3

[11] V. A. Andreev, V. I. Manko, Pisma v ZhETF, 72 (2000), 130

[12] M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, Violation of Bell inequalities and quantum tomography with pure-states, Werner-states and maximally entangled mixed states created by a universal quantum entangler, E-print quant-ph/0303018

[13] X.-H. Wu, H.-S. Zong, H.-R. Pong, F. Wang, Phys. Rev. A, 64 (2001), 022103(3) | DOI | MR

[14] F. J. Belinfante, A Survey of Hidden-Variables Theories, Pergamon, Oxford–New York, 1973 | MR

[15] V. A. Andreev, V. I. Manko, ZhETF, 114 (1998), 437 ; V. A. Andreev, V. I. Man'ko, J. Opt. B: Quantum Semiclass. Opt., 2 (2000), 122 | MR | DOI | MR