Attractor and Repeller Points for a~Several-Variable Analytic Dynamical System in a~Non-Archimedean Setting
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 329-336

Voir la notice de l'article provenant de la source Math-Net.Ru

We study discrete several-variable analytic dynamical systems over a complete non-Archimedean field with a nontrivial valuation and give sufficient conditions for a fixed point of the system to be an attractor, a repeller, or an indifferent point.
Keywords: $p$-adic numbers, non-Archimedean dynamical system, fixed point, attractor, repeller, Siegel disk.
@article{TMF_2004_140_2_a10,
     author = {J. Aguayo and M. Saavedra and M. Wallace},
     title = {Attractor and {Repeller} {Points} for {a~Several-Variable} {Analytic} {Dynamical} {System} in {a~Non-Archimedean} {Setting}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--336},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/}
}
TY  - JOUR
AU  - J. Aguayo
AU  - M. Saavedra
AU  - M. Wallace
TI  - Attractor and Repeller Points for a~Several-Variable Analytic Dynamical System in a~Non-Archimedean Setting
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 329
EP  - 336
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/
LA  - ru
ID  - TMF_2004_140_2_a10
ER  - 
%0 Journal Article
%A J. Aguayo
%A M. Saavedra
%A M. Wallace
%T Attractor and Repeller Points for a~Several-Variable Analytic Dynamical System in a~Non-Archimedean Setting
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 329-336
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/
%G ru
%F TMF_2004_140_2_a10
J. Aguayo; M. Saavedra; M. Wallace. Attractor and Repeller Points for a~Several-Variable Analytic Dynamical System in a~Non-Archimedean Setting. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 329-336. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/