Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 329-336
Cet article a éte moissonné depuis la source Math-Net.Ru
We study discrete several-variable analytic dynamical systems over a complete non-Archimedean field with a nontrivial valuation and give sufficient conditions for a fixed point of the system to be an attractor, a repeller, or an indifferent point.
Keywords:
$p$-adic numbers, non-Archimedean dynamical system, fixed point, attractor, repeller, Siegel disk.
@article{TMF_2004_140_2_a10,
author = {J. Aguayo and M. Saavedra and M. Wallace},
title = {Attractor and {Repeller} {Points} for {a~Several-Variable} {Analytic} {Dynamical} {System} in {a~Non-Archimedean} {Setting}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {329--336},
year = {2004},
volume = {140},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/}
}
TY - JOUR AU - J. Aguayo AU - M. Saavedra AU - M. Wallace TI - Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2004 SP - 329 EP - 336 VL - 140 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/ LA - ru ID - TMF_2004_140_2_a10 ER -
%0 Journal Article %A J. Aguayo %A M. Saavedra %A M. Wallace %T Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting %J Teoretičeskaâ i matematičeskaâ fizika %D 2004 %P 329-336 %V 140 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/ %G ru %F TMF_2004_140_2_a10
J. Aguayo; M. Saavedra; M. Wallace. Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 329-336. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/
[1] M. R. Herman, J.-C. Yoccoz, “Generalizations of some theorems of small divisors to non-archimedean fields”, Geometric Dynamics, Proc. of the Intern. Symp. (Rio de Janeiro, 1981), Lect. Notes in Math., 1007, ed. J. Palis, Jr., Springer, Berlin–New York, 1983, 408–447 | DOI | MR
[2] A. Yu. Khrennikov (ed.), Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer, Dordrecht, 1997 | MR | Zbl
[3] W. H. Schikhof, Ultrametric Calculus. An Introduction to $p$-Adic Analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[4] A. Yu. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics, Kluwer, Dordrecht, 1994 | MR | Zbl