Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 329-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study discrete several-variable analytic dynamical systems over a complete non-Archimedean field with a nontrivial valuation and give sufficient conditions for a fixed point of the system to be an attractor, a repeller, or an indifferent point.
Keywords: $p$-adic numbers, non-Archimedean dynamical system, fixed point, attractor, repeller, Siegel disk.
@article{TMF_2004_140_2_a10,
     author = {J. Aguayo and M. Saavedra and M. Wallace},
     title = {Attractor and {Repeller} {Points} for {a~Several-Variable} {Analytic} {Dynamical} {System} in {a~Non-Archimedean} {Setting}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--336},
     year = {2004},
     volume = {140},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/}
}
TY  - JOUR
AU  - J. Aguayo
AU  - M. Saavedra
AU  - M. Wallace
TI  - Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 329
EP  - 336
VL  - 140
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/
LA  - ru
ID  - TMF_2004_140_2_a10
ER  - 
%0 Journal Article
%A J. Aguayo
%A M. Saavedra
%A M. Wallace
%T Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 329-336
%V 140
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/
%G ru
%F TMF_2004_140_2_a10
J. Aguayo; M. Saavedra; M. Wallace. Attractor and Repeller Points for a Several-Variable Analytic Dynamical System in a Non-Archimedean Setting. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 329-336. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a10/

[1] M. R. Herman, J.-C. Yoccoz, “Generalizations of some theorems of small divisors to non-archimedean fields”, Geometric Dynamics, Proc. of the Intern. Symp. (Rio de Janeiro, 1981), Lect. Notes in Math., 1007, ed. J. Palis, Jr., Springer, Berlin–New York, 1983, 408–447 | DOI | MR

[2] A. Yu. Khrennikov (ed.), Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer, Dordrecht, 1997 | MR | Zbl

[3] W. H. Schikhof, Ultrametric Calculus. An Introduction to $p$-Adic Analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[4] A. Yu. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics, Kluwer, Dordrecht, 1994 | MR | Zbl