Hitchin System on Singular Curves
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 179-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Hitchin system on singular curves. We consider curves obtainable from the projective line by matching at several points or by inserting cusp singularities. It appears that on such singular curves, all basic ingredients of Hitchin integrable systems (moduli space of vector bundles, dualizing sheaf, Higgs field, etc.) can be explicitly described, which can be interesting in itself. Our main result is explicit formulas for the Hitchin Hamiltonians. We also show how to obtain the Hitchin integrable system on such curves by Hamiltonian reduction from a much simpler system on a finite-dimensional space. We pay special attention to a degenerate curve of genus two for which we find an analogue of the Narasimhan–Ramanan parameterization of the moduli space of $SL(2)$ bundles as well as the explicit expressions for the symplectic structure and Hitchin-system Hamiltonians in these coordinates. We demonstrate the efficiency of our approach by rederiving the rational and trigonometric Calogero–Moser systems, which are obtained from Hitchin systems on curves with a marked point and with the respective cusp and node.
Keywords: integrable systems, Hitchin systems, singular curves, Narasimhan–Ramanan parameterization.
Mots-clés : Calogero–Moser system
@article{TMF_2004_140_2_a0,
     author = {D. V. Talalaev and A. V. Chervov},
     title = {Hitchin {System} on {Singular} {Curves}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--215},
     year = {2004},
     volume = {140},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a0/}
}
TY  - JOUR
AU  - D. V. Talalaev
AU  - A. V. Chervov
TI  - Hitchin System on Singular Curves
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 179
EP  - 215
VL  - 140
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a0/
LA  - ru
ID  - TMF_2004_140_2_a0
ER  - 
%0 Journal Article
%A D. V. Talalaev
%A A. V. Chervov
%T Hitchin System on Singular Curves
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 179-215
%V 140
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a0/
%G ru
%F TMF_2004_140_2_a0
D. V. Talalaev; A. V. Chervov. Hitchin System on Singular Curves. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 2, pp. 179-215. http://geodesic.mathdoc.fr/item/TMF_2004_140_2_a0/

[1] N. Hitchin, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[2] N. Nekrasov, Commun. Math. Phys., 180 (1996), 587–604 ; E-print hep-th/9503157 | DOI | MR

[3] B. Enriquez, V. Rubtsov, Math. Res. Lett., 3 (1996), 343–357 ; E-print alg-geom/9503010 | DOI | MR | Zbl

[4] E. Markman, Compos. Math., 93 (1994), 225–290 | MR

[5] A. Beilinson, V. Drinfeld, Quantization of Hitchin Integrable System and Hecke Eigensheaves, http://www.math.utexas.edu/\allowbreakb̃enzvi/Math.html | Zbl

[6] B. Feigin, E. Frenkel, N. Reshetikhin, Commun. Math. Phys., 166 (1994), 27–62 ; E-print hep-th/9402022 | DOI | MR | Zbl

[7] E. Frenkel, Affine algebras, Langlands duality, and Bethe ansatz, E-print q-alg/9506003 | MR

[8] A. Levin, M. Olshanetsky, Painlevé–Calogero correpondence, E-print alg-geom/9706010 | MR

[9] I. M. Krichever, “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 79–136 | MR

[10] D. V. Talalaev, TMF, 130:3 (2002), 426–441 | DOI | MR | Zbl

[11] P. Saksida, Proc. Lond. Math. Soc. (3), 78:3 (1999), 701–720 | DOI | MR | Zbl

[12] A. Gorsky, N. Nekrasov, V. Rubtsov, Commun. Math. Phys., 222 (2001), 299–318 ; E-print hep-th/9901089 | DOI | MR | Zbl

[13] R. Donagi, E. Witten, Nucl. Phys. B, 460 (1996), 299–334 | DOI | MR | Zbl

[14] B. Enriquez, V. Rubtsov, Hecke–Tyurin parametrization of the Hitchin and KZB systems, E-print math.AG/9911087 | MR

[15] M. S. Narasimhan, S. Ramanan, Ann. Math., 89 (1969), 19–51 | DOI | MR

[16] J.-P. Serre, Algebraic Groups and Class Fields, Graduate Texts in Mathematics, 117, Springer, New York, 1988 | DOI | MR | Zbl

[17] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York, 1977 | DOI | MR | Zbl

[18] J. Harris, I. Morrison, Moduli of Curves, Graduate Texts in Mathematics, 187, Springer, New York, 1998 | MR

[19] J.-P. Serre, Ann. Inst. Fourier, 6 (1955/1956), 1–42 | DOI | MR

[20] A. Chervov, D. Talalaev, Hitchin systems and singular curves. II: Gluing subshemes, E-print hep-th/0309059

[21] D. V. Osipov, Krichever correspondence for algebraic varieties, E-print math.AG/0003188

[22] A. Beauville, Acta Math., 164:3/4 (1990), 211–235 | DOI | MR | Zbl

[23] B. van Geemen, E. Previato, Duke Math. J, 85 (1996), 659–684 | DOI | MR

[24] K. Gawedzki, P. Tran-Ngoc-Bich, J. Math. Phys., 41 (2000), 4695–4712 | DOI | MR | Zbl

[25] M. S. Narasimhan, S. Ramanan, “$2\Theta$ linear systems on Abelian varieties”, Vector Bundles on Algebraic Varieties, Proc. Bombay Conf. (1984), eds. M. Atiyah et al., Oxford Univ. Press, Oxford, 1987, 415–427 | MR

[26] A. Chervov, A. Samohin, D. Talalaev, “Hecke–Tyurin parametrization of vector bundles on singular curves” (to appear)

[27] J. C. Hurtubise, E. Markman, Commun. Math. Phys., 223 (2001), 533–552 ; E-print math.AG/9912161 | DOI | MR | Zbl

[28] V. Fock, A. Gorsky, N. Nekrasov, V. Rubtsov, JHEP, 0007 (2000), 028 ; E-print hep-th/9906235 | DOI | MR

[29] A. Gorsky, V. Rubtsov, Dualities in integrable systems: geometrical aspects, E-print hep-th/0103004 | MR

[30] O. Babelon, M. Talon, Riemann surfaces, separation of variables and classical and quantum integrability, E-print hep-th/0209071 | MR

[31] B. Enriquez, V. Rubtsov, Commuting families in skew fields and quantization of Beauville's fibration, E-print math.AG/0112276 | MR

[32] B. Enriquez, V. Rubtsov, Quantizations of Hitchin and Beauville–Mukai integrable systems, E-print math.AG/0209294 | MR

[33] J. Avan, O. Babelon, E. Billey, Commun. Math. Phys., 178 (1996), 281–299 | DOI | MR | Zbl

[34] V. A. Dolgushev, Commun. Math. Phys., 238 (2003), 131–147 ; E-print math.AG/0209145 | DOI | MR | Zbl

[35] E. Sklyanin, Progr. Theor. Phys. Suppl., 185 (1995), 35–60 | DOI | MR

[36] B. Enriquez, B. Feigin, V. Rubtsov, Separation of variables for Gaudin–Calogero systems, E-print q-alg/9605030 | MR