Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 113-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the pair correlation function and the magnetic susceptibility in the anisotropic Ising model on the lattice with one infinite and one finite dimension with periodic boundary conditions imposed along the second dimension. Using the exact expressions for lattice form factors, we propose formulas for arbitrary spin matrix elements, thus providing a possibility to calculate all multipoint correlation functions in the anisotropic Ising model on cylindrical and toroidal lattices. We analyze passing to the scaling limit.
Keywords: Ising model, correlation function, susceptibility, form factor, finite-size lattice.
@article{TMF_2004_140_1_a8,
     author = {A. I. Bugrij and O. O. Lisovyy},
     title = {Correlation {Function} of the {Two-Dimensional} {Ising} {Model} on {a~Finite} {Lattice:~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {113--127},
     year = {2004},
     volume = {140},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a8/}
}
TY  - JOUR
AU  - A. I. Bugrij
AU  - O. O. Lisovyy
TI  - Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 113
EP  - 127
VL  - 140
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a8/
LA  - ru
ID  - TMF_2004_140_1_a8
ER  - 
%0 Journal Article
%A A. I. Bugrij
%A O. O. Lisovyy
%T Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 113-127
%V 140
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a8/
%G ru
%F TMF_2004_140_1_a8
A. I. Bugrij; O. O. Lisovyy. Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 113-127. http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a8/

[1] A. I. Bugrii, TMF, 127:1 (2001), 143 | DOI | MR | Zbl

[2] A. I. Bugrii, O. O. Lisovoi, ZhETF, 121:6 (2002), 1328; E-print hep-th/0106270

[3] B. M. McCoy, T. T. Wu, The Two-Dimensional Ising Model, Harvard Univ. Press, Cambridge, 1973

[4] K. Yamada, Prog. Theor. Phys., 71 (1984), 1416 | DOI | MR | Zbl

[5] J. Palmer, C. A. Tracy, Adv. Appl. Math., 2 (1981), 329 | DOI | MR | Zbl

[6] T. T. Wu, B. M. McCoy, C. A. Tracy, E. Barouch, Phys. Rev. B, 13 (1976), 316 | DOI | MR

[7] A. I. Bugrij, “Form factor representation of the correlation function of the two dimensional Ising model on a cylinder”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Sci. Ser. II, eds. S. Pakuliak, G. von Gehlen, Kluwer, Dordrecht, 2001, 65 ; E-print hep-th/0107117 | MR | Zbl

[8] O. Lisovyy, Adv. Theor. Math. Phys., 5:5 (2001), 909 ; E-print hep-th/0108015 | DOI | MR | Zbl

[9] A. I. Bugrij, O. Lisovyy, Phys. Lett. A, 319 (2003), 390 | DOI | MR | Zbl

[10] B. Berg, M. Karowski, P. Weisz, Phys. Rev. D, 19 (1979), 2477 | DOI

[11] P. Fonseca, A. Zamolodchikov, Ising field theory in a magnetic field: analytic properties of the free energy, E-print hep-th/0112167 | MR

[12] N. Kitanine, J. M. Maillet, V. Terras, Form factors of the $XXZ$ Heisenberg spin-$(1/2)$ finite chain, E-print math-ph/9807020 | MR