Local Stochastic Channeling Theory: Kinetic Functions in the Case of Interaction Between Fast Particles and Lattice Atoms
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 86-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the motion of high-energy particles in a crystal with regard to their interaction with the thermal vibrations of the lattice atoms using analytic methods in the theory of Markov processes including the local Fokker–Planck equation. We construct a local matrix of random actions, which is used to introduce the main kinetic functions in the traverse-energy space, namely, the function $a(\varepsilon_{\perp})$ of energy losses due to the dynamic friction and the diffusion function $b(\varepsilon_{\perp})$. We show that the singularities of the functions $a(\varepsilon_{\perp})$ and $b(\varepsilon_{\perp})$ are related to the distinction between the contributions to the kinetics from particles moving in three different regimes, namely, in the channeling, quasichanneling, and chaotic motion modes.
Keywords: stochastic theory, Markov process, planar channeling, energy losses, transverse energy.
@article{TMF_2004_140_1_a6,
     author = {Yu. A. Kashlev},
     title = {Local {Stochastic} {Channeling} {Theory:} {Kinetic} {Functions} in the {Case} of {Interaction} {Between} {Fast} {Particles} and {Lattice} {Atoms}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {86--99},
     year = {2004},
     volume = {140},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a6/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
TI  - Local Stochastic Channeling Theory: Kinetic Functions in the Case of Interaction Between Fast Particles and Lattice Atoms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 86
EP  - 99
VL  - 140
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a6/
LA  - ru
ID  - TMF_2004_140_1_a6
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%T Local Stochastic Channeling Theory: Kinetic Functions in the Case of Interaction Between Fast Particles and Lattice Atoms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 86-99
%V 140
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a6/
%G ru
%F TMF_2004_140_1_a6
Yu. A. Kashlev. Local Stochastic Channeling Theory: Kinetic Functions in the Case of Interaction Between Fast Particles and Lattice Atoms. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 86-99. http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a6/

[1] J. G. Kirkwood, J. Chem. Phys., 14 (1946), 180 | DOI

[2] J. G. Kirkwood, J. Chem. Phys., 15 (1946), 72 | DOI

[3] A. Suddaby, P. Gray, Proc. Phys. Soc. A, 75 (1960), 109 | DOI

[4] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[5] J. Lindhard, Mat. Fyz. Medd. Dan. Selek., 34:14 (1965), 1

[6] M. Rahman, Phys. Rev. B, 52:5 (1996), 3383 | DOI

[7] M. Medina Noyola, J. Keizer, Physica A, 107 (1981), 437 | DOI

[8] Dzh. Kaizer, Statisticheskaya termodinamika neravnovesnykh protsessov, Mir, M., 1990 | MR

[9] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, M., 1977 | MR | Zbl

[10] R. Kubo, “Nekotorye voprosy statistichesko-mekhanicheskoi teorii neobratimykh protsessov”, Termodinamika neobratimykh protsessov, ed. D. N. Zubarev, IL, M., 1962, 345

[11] F. J. Wegner, Phys. Rev. B, 5 (1972), 4529 | DOI

[12] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, T. 2. Gl. 21, Mir, M., 1978 | MR

[13] Yu. A. Kashlev, N. M. Sadykov, Phys. Stat. Sol. B, 196 (1996), 19 | DOI

[14] Yu. A. Kashlev, Phys. Stat. Sol. B, 190 (1995), 379 | DOI

[15] T. Oshiyama, J. Phys. Soc. Japan, 49:1 (1980), 290 | DOI

[16] L. T. Chadderton, Rad. Eff., 27:1 (1975), 12 | DOI

[17] P. Jonk, B. Schmeiedeskamp, H. E. Roosendaal, H. O. Lutz, Nucl. Instr. Methods B, 43 (1989), 9 | DOI

[18] H. E. Roosedaal, W. H. Kool, W. F. Van Der Weg, J. B. Sanders, Rad. Eff., 22 (1974), 89 | DOI

[19] S. Kopta, R. Hajduk, J. Lekki, B. Rajchel, A. Hrynkiewicz, Phys. Stat. Sol. A, 113 (1989), 295 | DOI