Equivalence of Many-Photon Green's Functions in the Duffin–Kemmer–Petiau and Klein–Gordon–Fock Statistical Quantum Field Theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 44-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Green's functions in the Duffin–Kemmer–Petiau and Klein–Gordon–Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Keywords: statistical field theory, photon Green's functions, path integral, renormalization, equivalency.
@article{TMF_2004_140_1_a3,
     author = {J. S. Valverde and B. M. Pimentel and V. Ya. Fainberg},
     title = {Equivalence of {Many-Photon} {Green's} {Functions} in the {Duffin{\textendash}Kemmer{\textendash}Petiau} and {Klein{\textendash}Gordon{\textendash}Fock} {Statistical} {Quantum} {Field} {Theories}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {44--52},
     year = {2004},
     volume = {140},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a3/}
}
TY  - JOUR
AU  - J. S. Valverde
AU  - B. M. Pimentel
AU  - V. Ya. Fainberg
TI  - Equivalence of Many-Photon Green's Functions in the Duffin–Kemmer–Petiau and Klein–Gordon–Fock Statistical Quantum Field Theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 44
EP  - 52
VL  - 140
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a3/
LA  - ru
ID  - TMF_2004_140_1_a3
ER  - 
%0 Journal Article
%A J. S. Valverde
%A B. M. Pimentel
%A V. Ya. Fainberg
%T Equivalence of Many-Photon Green's Functions in the Duffin–Kemmer–Petiau and Klein–Gordon–Fock Statistical Quantum Field Theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 44-52
%V 140
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a3/
%G ru
%F TMF_2004_140_1_a3
J. S. Valverde; B. M. Pimentel; V. Ya. Fainberg. Equivalence of Many-Photon Green's Functions in the Duffin–Kemmer–Petiau and Klein–Gordon–Fock Statistical Quantum Field Theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 44-52. http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a3/

[1] J. Matzubara, Progr. Theor. Phys., 9 (1953), 550 | DOI

[2] E. S. Fradkin, DAN SSSR, 98 (1954), 47 ; 100 (1955), 897 | MR | Zbl | MR | Zbl

[3] E. S. Fradkin, Tr. FIAN, 29, 1965, 3

[4] J. I. Kapusta, Finite Temperature Field Theory, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[5] M. Le Bellac, Thermal Field Theory, Cambridge Univ. Press, Cambridge, 2000 | MR

[6] R. Casana, V. Ya. Fainberg, B. M. Pimentel, J. S. Valverde, Phys. Lett. A, 316 (2003), 33 | DOI | MR | Zbl

[7] C. W. Bernard, Phys. Rev. D, 9 (1974), 3312 | DOI

[8] B. M. Pimentel, V. Ya. Fainberg, TMF, 124 (2000), 445 | DOI | MR | Zbl

[9] V. Ya. Fainberg, B. M. Pimentel, Braz. J. Phys., 30 (2000), 275 | DOI

[10] V. Ya. Fainberg, B. M. Pimentel, Phys. Lett. A, 271 (2000), 16 | DOI | MR | Zbl

[11] V. Ya. Fainberg, B. M. Pimentel, J. S. Valverde, “Dispersion method in DKP theory”, Quantization, Gauge Theories and Strings, Proc. of the Intern. Meeting, dedicated to the memory of E. S. Fradkin. V. II (Moscow, June 5–10, 2000), eds. A. Semikhatov, M. Vasiliev, V. Zaikin, Scientific World, Singapore, 2001, 79 | MR

[12] H. J. Rothe, Lattice Gauge Theories: An Introduction, World Scientific, Singapure, 1996 | MR