Gravitational Effects on Light Rays and Binary Pulsar Energy Loss in a Scalar Theory of Gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 139-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We summarize a scalar bimetric theory of gravity with a preferred reference frame. The dynamics are governed by an extension of Newton's second law. We recover geodesic motion together with Newton's attraction field in the static case and find Schwarzschild's metric in the static spherical case. We build asymptotic schemes of post-Newtonian (PN) and post-Minkowskian (PM) approximations, each based on associating a conceptual family of systems with the given system. At the 1PN approximation, there is no preferred-frame effect for photons, and we hence obtain the standard predictions of GR for photons. At the 0PM approximation, an isolated system loses energy by quadrupole radiation without any monopole or dipole term. Inserting this loss into the Newtonian two-body problem gives the Peters–Mathews coefficients of the theory.
Keywords: gravity, asymptotic approximation, post-Newtonian approximation
Mots-clés : gravitational radiation.
@article{TMF_2004_140_1_a10,
     author = {M. Arminjon},
     title = {Gravitational {Effects} on {Light} {Rays} and {Binary} {Pulsar} {Energy} {Loss} in {a~Scalar} {Theory} of {Gravity}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {139--159},
     year = {2004},
     volume = {140},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a10/}
}
TY  - JOUR
AU  - M. Arminjon
TI  - Gravitational Effects on Light Rays and Binary Pulsar Energy Loss in a Scalar Theory of Gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 139
EP  - 159
VL  - 140
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a10/
LA  - ru
ID  - TMF_2004_140_1_a10
ER  - 
%0 Journal Article
%A M. Arminjon
%T Gravitational Effects on Light Rays and Binary Pulsar Energy Loss in a Scalar Theory of Gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 139-159
%V 140
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a10/
%G ru
%F TMF_2004_140_1_a10
M. Arminjon. Gravitational Effects on Light Rays and Binary Pulsar Energy Loss in a Scalar Theory of Gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 139-159. http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a10/

[1] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977

[2] S. Carlip, Phys. Lett. A, 267 (2000), 81–87 ; E-print gr-qc/9909087 | DOI | MR | Zbl

[3] M. Arminjon, Rev. Roumaine Sci. Tech. Ser. Méc. Appl., 42 (1997), 27–57; http://geo.hmg.inpg.fr/arminjon/pub_list.html#A18 | Zbl

[4] M. Arminjon, Arch. Mech., 48 (1996), 25–52 ; http://geo.hmg.inpg.fr/arminjon/pub_list.html#A15 | MR | Zbl | Zbl

[5] M. Arminjon, An. Univ. Bucuresti Fizica, 47 (1998), 3–21; E-print physics/9911025

[6] M. Arminjon, Rev. Roumaine Sci. Tech. Ser. Méc. Appl., 43 (1998), 135–153; E-print gr-qc/9912041

[7] L. Euler, “Recherches physiques sur la nature des moindres parties de la matière. Von der Schwere und den Kraeften so auf die himmlischen Koepler wirken”, Leonhardi Euleri Opera Omnia, Series Tertia, Pars Prima, 1911, 3–15; B. G. Teubner, Leipzig–Bern, 149–156

[8] M. Arminjon, “Remarks on the mathematical origin of wave mechanics and consequences for a quantum mechanics in a gravitational field”, 6th Intern. Conf. “Physical Interpretations of Relativity Theory”, Supplementary Papers (London, September 11–14, 1998), ed. M. C. Duffy, British Society for the Philosophy of Science, London, 1998, 1–17; E-print gr-qc/0203104

[9] C. Cattaneo, Nuovo Cimento, 10 (1958), 318–337 | DOI | MR | Zbl

[10] A. A. Logunov, Yu. M. Loskutov, M. A. Mestvirishvili, UFN, 155:3 (1988), 369–396 | DOI

[11] A. A. Logunov, M. A. Mestvirishvili, Osnovy relyativistskoi teorii gravitatsii, Izd-vo MGU, M., 1986

[12] M. Arminjon, Phys. Essays, 14 (2001), 10–32 ; E-print gr-qc/9911057 | DOI

[13] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1967 | MR | Zbl

[14] M. Arminjon, Arch. Mech., 48 (1996), 551–576 ; http://geo.hmg.inpg.fr/arminjon/pub_list.html#A16 | MR | Zbl | Zbl

[15] S. Veinberg, Gravitatsiya i kosmologiya, Mir, M., 1975

[16] K. Uill, Teoriya i eksperiment v gravitatsionnoi fizike, Energoatomizdat, M., 1985

[17] M. Arminjon, “Equations of motion of the mass centers in a scalar theory of gravitation: Expansion in the separation parameter”, Romanian J. Phys (to appear) | Zbl

[18] M. Arminjon, Int. J. Mod. Phys. A, 17 (2002), 4203–4208 ; E-print gr-qc/0205105 | DOI | Zbl

[19] T. Futamase, B. F. Schutz, Phys. Rev. D, 28 (1983), 2363–2372 | DOI | MR

[20] M. Arminjon, Romanian J. Phys., 45 (2000), 389–414 ; E-print gr-qc/0003066 | MR | Zbl

[21] H. Stephani, General Relativity, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl

[22] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, Fizmatlit, M., 1961

[23] T. Damour, B. Schmidt, J. Math. Phys., 31 (1990), 2441–2453 | DOI | MR | Zbl

[24] T. Damour, “The problem of motion in Newtonian and Einsteinian gravity”, Three Hundred Years of Gravitation, eds. S. W. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1987, 128–198 | MR | Zbl

[25] J. H. Taylor, J. M. Weisberg, Astrophys. J., 253 (1982), 908–920 | DOI

[26] N. Rosen, Ann. Phys., 84 (1974), 455–473 | DOI | MR