Optical Buffering and Mechanisms for Its Occurrence
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 14-28
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate a mathematical nonlinear-optics model that is a scalar parabolic equation on a circle with a small diffusion coefficient and a deviating spatial argument. We establish that the problem under consideration is characterized by the so-called buffering phenomenon, i.e.under an appropriate choice of the parameters, the coexistence of an arbitrary fixed number of time-periodic stable solutions of the problem can be obtained. We reveal the mechanisms for the occurrence of this phenomenon.
Keywords:
boundary problem, buffering, traveling waves, Ginzburg–Landau equation.
Mots-clés : bifurcation, quasinormal form
Mots-clés : bifurcation, quasinormal form
@article{TMF_2004_140_1_a1,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {Optical {Buffering} and {Mechanisms} for {Its} {Occurrence}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {14--28},
publisher = {mathdoc},
volume = {140},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a1/}
}
A. Yu. Kolesov; N. Kh. Rozov. Optical Buffering and Mechanisms for Its Occurrence. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 14-28. http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a1/