Optical Buffering and Mechanisms for Its Occurrence
Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 14-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a mathematical nonlinear-optics model that is a scalar parabolic equation on a circle with a small diffusion coefficient and a deviating spatial argument. We establish that the problem under consideration is characterized by the so-called buffering phenomenon, i.e.under an appropriate choice of the parameters, the coexistence of an arbitrary fixed number of time-periodic stable solutions of the problem can be obtained. We reveal the mechanisms for the occurrence of this phenomenon.
Keywords: boundary problem, buffering, traveling waves, Ginzburg–Landau equation.
Mots-clés : bifurcation, quasinormal form
@article{TMF_2004_140_1_a1,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Optical {Buffering} and {Mechanisms} for {Its} {Occurrence}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {14--28},
     publisher = {mathdoc},
     volume = {140},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a1/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Optical Buffering and Mechanisms for Its Occurrence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 14
EP  - 28
VL  - 140
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a1/
LA  - ru
ID  - TMF_2004_140_1_a1
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Optical Buffering and Mechanisms for Its Occurrence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 14-28
%V 140
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a1/
%G ru
%F TMF_2004_140_1_a1
A. Yu. Kolesov; N. Kh. Rozov. Optical Buffering and Mechanisms for Its Occurrence. Teoretičeskaâ i matematičeskaâ fizika, Tome 140 (2004) no. 1, pp. 14-28. http://geodesic.mathdoc.fr/item/TMF_2004_140_1_a1/