The Relation and Evolution of Squeezing and Instability for Systems with Quadratic Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 3, pp. 477-490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method that allows relating the quantum squeezing effect to the classical instability by establishing evolution equations for elements of the dispersion matrix directly in terms of elements of the stability matrix. The solution of these equations is written in terms of the evolution operator. Knowing this operator, we can analyze the system instability at finite times. Based on the developed formalism, we investigate two physical systems: the degenerate and nondegenerate parametric amplifiers with external $\delta$-shaped pulses. We show that we can either amplify or, on the contrary, weaken both the squeezing effect and the system instability using $\delta$-pulses.
Keywords: squeezing, instability, stability matrix, evolution operator, Lyapunov exponent.
Mots-clés : dispersion matrix
@article{TMF_2004_139_3_a8,
     author = {V. I. Kuvshinov and V. V. Marmysh and V. A. Shaporov},
     title = {The {Relation} and {Evolution} of {Squeezing} and {Instability} for {Systems} with {Quadratic} {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {477--490},
     year = {2004},
     volume = {139},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a8/}
}
TY  - JOUR
AU  - V. I. Kuvshinov
AU  - V. V. Marmysh
AU  - V. A. Shaporov
TI  - The Relation and Evolution of Squeezing and Instability for Systems with Quadratic Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 477
EP  - 490
VL  - 139
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a8/
LA  - ru
ID  - TMF_2004_139_3_a8
ER  - 
%0 Journal Article
%A V. I. Kuvshinov
%A V. V. Marmysh
%A V. A. Shaporov
%T The Relation and Evolution of Squeezing and Instability for Systems with Quadratic Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 477-490
%V 139
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a8/
%G ru
%F TMF_2004_139_3_a8
V. I. Kuvshinov; V. V. Marmysh; V. A. Shaporov. The Relation and Evolution of Squeezing and Instability for Systems with Quadratic Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 3, pp. 477-490. http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a8/

[1] G. M. Zaslavskii, B. V. Chirikov, UFN, 105 (1971), 3 | DOI

[2] V. I. Kuvshinov, A. V. Kuzmin, Phys. Lett. A, 296 (2002), 82 | DOI | MR | Zbl

[3] W. A. Lin, L. E. Ballentine, Phys. Rev. Lett., 65 (1990), 2927 | DOI

[4] V. E. Bunakov, “Khaos, kvantovyi khaos i yadernaya fizika”, Fizika atomnogo yadra i elementarnykh chastits, Materialy XXXII Zimnei shkoly PIYaF (22–28 fevralya 1998, Sankt-Peterburg), eds. Ya. I. Azimov, V. E. Bunakov, V. A. Gordeev i dr., Izd-vo PIYaF, S.-Pb., 5 | MR

[5] N. K. Nielsen, P. Olesen, Nucl. Phys. B, 160 (1979), 380 ; P. Olesen, Nucl. Phys. B, 200 (1982), 381 | DOI | DOI

[6] Yu. A. Simonov, UFN, 166 (1996), 337 | DOI

[7] T. Kawabe, S. Ohta, Phys. Rev. D, 44 (1991), 1274 | DOI | MR

[8] T. S. Biro, S. G. Matinyan, B. Muller, Chaos and Gauge Field Theory, World Scientific, Singapore, 1994 | MR | Zbl

[9] G. M. Zaslavskii, Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR | Zbl

[10] De O. Almeida, Hamiltonian Systems: Chaos and Quantization, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[11] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York, 1990 | MR | Zbl

[12] F. Haake, Quantum Signatures of Chaos, Springer, New York, 1991 | MR | Zbl

[13] G. Casati, B. Chirikov, Quantum Chaos, Cambridge Univ. Press, Cambridge, 1995 | MR

[14] A. Likhtenberg, M. Liberman, Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984

[15] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku: Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR

[16] G. Shuster, Determinirovannyi khaos. Vvedenie, Mir, M., 1988 | MR | Zbl

[17] M. Tabor, Khaos i integriruemost v nelineinoi dinamike, Editorial URSS, M., 2001

[18] S. Ya. Kilin, Kvantovaya optika: polya i ikh detektirovanie, Nauka i tekhnika, Minsk, 1990

[19] O. Hirota, Squeezed Light, Elsevier, Tokyo, 1990

[20] D. F. Walls, G. J. Milburn, Quantum Optics, Springer, New York, 1995 | MR | Zbl

[21] M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge, 1997

[22] B. V. Chirikov, “The uncertainty principle and quantum chaos”, Proc. of 2nd Int. Workshop on Squeezed states and Uncertainty relations (May 25–29, 1992, Moscow), NASA Conf. Publ., 3219, eds. D. Han, Y. S. Kim, V. I. Man'ko, NASA, Washington, 1993, 317

[23] A. Heidmann, J. M. Raimond, S. Reynaud, N. Zagure, Opt. Commun., 54 (1985), 189 | DOI

[24] L. G. Yaffe, Rev. Mod. Phys., 54 (1982), 407 | DOI | MR

[25] K. N. Alekseev, Opt. Commun., 116 (1995), 468 ; E-print quant-ph/9808010 | DOI

[26] K. N. Alekseev, J. Peřina, Phys. Rev. E, 57 (1998), 4023 ; E-print chao-dyn/9804041 | DOI

[27] K. N. Alekseev, D. S. Priimak, ZhETF, 113 (1998), 111

[28] V. V. Dodonov, I. M. Dremin, O. V. Man'ko, V. I. Man'ko, P. G. Polynkin, Squeezed and correlated states of quantum fields and multiplicity particle distributions, E-print hep-ph/9502394

[29] M. Toda, Phys. Lett. A, 48 (1974), 335 | DOI | MR

[30] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M., 1950 | MR

[31] A. N. Tikhonov, “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Matem. sb., 22 (64):2 (1948), 193 ; 31 (73):3 (1952), 147 | Zbl | MR

[32] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR

[33] A. Messia, Kvantovaya mekhanika, T. 1, Nauka, M., 1978 | MR

[34] G. N. Borzdov, J. Math. Phys., 38 (1997), 6328 | DOI | MR | Zbl

[35] V. I. Kuvshinov, V. V. Marmysh, V. A. Shaparau, “Quantum squeezing evolution under influence of the instability”, Proc. of the $XI^{th}$ Ann. Sem. Nonlinear Phenomena in Compex Systems (May 13–16, 2002, Minsk), 11, eds. L. F. Babichev, V. I. Kuvshinov, Institute of physics NASB, Minsk, 2002, 196