Evolution in a Gaussian Random Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 3, pp. 512-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an evolution process in a Gaussian random field $V(q)$ with the mean $\bigl\langle V(q)\bigr\rangle=0$ and the correlation function $W\bigl(|\mathbf{q}-\mathbf{q}^{\prime}|\bigr)\equiv \bigl\langle V(q)V(q^{\prime})\bigr\rangle$ where $\mathbf{q}\in \mathbb{R}^{d}$, $d$ is the dimension of the Euclidean space $\mathbb{R}^{d}$. For the value $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $t>0$, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman–Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $|\mathbf{q}-\mathbf{q}_{0}|\rightarrow\infty$ and $t\rightarrow\infty$.
Keywords: random field, correlation function, Green's function, renormalization group.
Mots-clés : Feynman–Kac formula
@article{TMF_2004_139_3_a11,
     author = {V. I. Alkhimov},
     title = {Evolution in a {Gaussian} {Random} {Field}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {512--528},
     year = {2004},
     volume = {139},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a11/}
}
TY  - JOUR
AU  - V. I. Alkhimov
TI  - Evolution in a Gaussian Random Field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 512
EP  - 528
VL  - 139
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a11/
LA  - ru
ID  - TMF_2004_139_3_a11
ER  - 
%0 Journal Article
%A V. I. Alkhimov
%T Evolution in a Gaussian Random Field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 512-528
%V 139
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a11/
%G ru
%F TMF_2004_139_3_a11
V. I. Alkhimov. Evolution in a Gaussian Random Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 3, pp. 512-528. http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a11/

[1] Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokoloff, Sov. Sci. Rev. C, 7 (1988), 1–110 | Zbl

[2] S. A. Molchanov, “Lectures on the random media”, Lectures on Probability Theory, Lect. Notes Math., 1581, eds. D. Bakry et al., Springer, Berlin, 1994, 242–411 | DOI | MR | Zbl

[3] L. B. Bogachev, S. A. Molchanov, TMF, 81 (1989), 281–290 ; 82 (1990), 143–154 ; 87 (1991), 254–273 | MR | MR | Zbl | MR | Zbl

[4] S. Albeverio, L. V. Bogachev, S. A. Molchanov, E. B. Yarovaya, Markov Processes and Related Fields, 6 (2000), 473–516 | MR | Zbl

[5] R. Feinman, Statisticheskaya mekhanika, Mir, M., 1978

[6] Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmaikin, D. D. Sokolov, UFN, 152 (1987), 3–32 | DOI | MR

[7] M. Kats, Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965 | Zbl

[8] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody kvantovoi fiziki. (Podkhod s ispolzovaniem funktsionalnykh integralov), Mir, M., 1984 | MR

[9] P. Cartier, C. DeWitt-Morette, A Rigorous Mathematical Foundation of Functional Integration, Plenum Press, New York, 1997 | MR

[10] L. S. Schulman, Techniques and Applications of Path Integration, Wiley, New York, 1981 | MR | Zbl

[11] V. I. Alkhimov, TMF, 29 (1976), 424–429 | MR

[12] V. I. Alkhimov, TMF, 39 (1979), 215–218 | MR

[13] D. C. Brydges, “A short course on cluster expansions”, Critical Phenomena, Random Systems, Gauge Theories, Les Houches Summer School (1984), eds. K. Osterwalder, R. Stora, North Holland, Amsterdam, 1986, 131–183 | MR

[14] E. Z. Kuchinskii, M. V. Sadovskii, ZhETF, 113 (1998), 664–678

[15] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[16] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979