Evolution in a Gaussian Random Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 3, pp. 512-528
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an evolution process in a Gaussian random field $V(q)$ with the mean $\bigl\langle V(q)\bigr\rangle=0$ and the correlation function $W\bigl(|\mathbf{q}-\mathbf{q}^{\prime}|\bigr)\equiv \bigl\langle V(q)V(q^{\prime})\bigr\rangle$ where $\mathbf{q}\in \mathbb{R}^{d}$, $d$ is the dimension of the Euclidean space $\mathbb{R}^{d}$. For the value $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $t>0$, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman–Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $|\mathbf{q}-\mathbf{q}_{0}|\rightarrow\infty$ and $t\rightarrow\infty$.
Keywords:
random field, correlation function, Green's function, renormalization group.
Mots-clés : Feynman–Kac formula
Mots-clés : Feynman–Kac formula
@article{TMF_2004_139_3_a11,
author = {V. I. Alkhimov},
title = {Evolution in a {Gaussian} {Random} {Field}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {512--528},
publisher = {mathdoc},
volume = {139},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a11/}
}
V. I. Alkhimov. Evolution in a Gaussian Random Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 3, pp. 512-528. http://geodesic.mathdoc.fr/item/TMF_2004_139_3_a11/