The Liouville Field Theory Zero-Mode Problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 245-267
Voir la notice de l'article provenant de la source Math-Net.Ru
We quantize the canonical free-field zero modes $p$, $q$ on the half-plane $p>0$ for both Liouville field theory and its reduced Liouville particle dynamics. We describe the particle dynamics in detail, calculate one-point functions of particle vertex operators, deduce their zero-mode realization on the half-plane, and prove that the particle vertex operators act self-adjointly on the Hilbert space $L^2(\mathbb{R}_+)$ because of symmetries generated by the $S$-matrix. Similarly, we obtain the self-adjointness of the corresponding Liouville field theory vertex operator in the zero-mode sector by applying the Liouville reflection amplitude, which is derived by the operator method.
Keywords:
conformal field theory, Liouville theory, Hamiltonian reduction, half-plane quantization.
Mots-clés : Liouville particle dynamics, zero modes
Mots-clés : Liouville particle dynamics, zero modes
@article{TMF_2004_139_2_a4,
author = {G. P. Jorjadze and G. Weigt},
title = {The {Liouville} {Field} {Theory} {Zero-Mode} {Problem}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {245--267},
publisher = {mathdoc},
volume = {139},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a4/}
}
G. P. Jorjadze; G. Weigt. The Liouville Field Theory Zero-Mode Problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 245-267. http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a4/