Toda Chains in the Jacobi Method
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 225-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the Jacobi method to construct various integrable systems, such as the Stдckel systems and Toda chains, related to various root systems. We find canonical transformations that relate integrals of motion for the generalized open Toda chains of types $B_n$, $C_n$, and $D_n$.
Keywords: integrable systems, Hamilton–Jacobi equation, separation of variables, Toda chains.
@article{TMF_2004_139_2_a3,
     author = {A. V. Tsiganov},
     title = {Toda {Chains} in the {Jacobi} {Method}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--244},
     year = {2004},
     volume = {139},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a3/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Toda Chains in the Jacobi Method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 225
EP  - 244
VL  - 139
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a3/
LA  - ru
ID  - TMF_2004_139_2_a3
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Toda Chains in the Jacobi Method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 225-244
%V 139
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a3/
%G ru
%F TMF_2004_139_2_a3
A. V. Tsiganov. Toda Chains in the Jacobi Method. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a3/

[1] C. G. J. Jacobi, Crelle's Journal, 27 (1837), 97 | DOI

[2] C. G. J. Jacobi, Vorlesungen über Dynamik, G. Reimer, Berlin, 1884 ; K. Yakobi, Lektsii po dinamike, Gostekhizdat, L., 1936 | Zbl

[3] L. Euler, Institutionum Calculi Integralis, V. 1–3, Impensis Academia Imperialis Scientiarum, Petersburg, 1768–1770; L. Eiler, Integralnoe ischislenie, T. 1–3, GITL, M., 1956–1958

[4] J. Liouville, J. Math. Pure Appl., 14 (1849), 257

[5] C. Neumann, J. Reine Angew. Math., 56 (1859), 46 | DOI | MR | Zbl

[6] P. Stäckel, Über die Integration der Hamilton–Jacobischen Differentialgeichung Mittels Separation der Variabeln, Habilitationsschrift, Halle, 1891

[7] A. M. Vinogradov, B. A. Kupershmidt, UMN, 32 (1977), 175 | Zbl

[8] L. A. Pars, Amer. Math. Monthly, 56 (1949), 394 | DOI | MR

[9] V. V. Sokolov, A. V. Tsyganov, TMF, 133 (2002), 485 | DOI | Zbl

[10] O. Babelon, M. Talon, Phys. Lett. A, 312 (2003), 71 ; ; O. Babelon, J. Phys. A, 37 (2004), 303 ; E-print hep-th/0209071E-print hep-th/0304052 | DOI | MR | Zbl | DOI | MR | Zbl

[11] A. V. Tsiganov, J. Phys. A, 32 (1999), 7965 | DOI | MR | Zbl

[12] M. C. Gutzwiller, Ann. Phys., 124 (1980), 347 ; 133 (1981), 304 | DOI | MR | DOI | MR

[13] E. K. Sklyanin, “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory, Proc. Semin. (Mendon, Paris, 1983/1984), Lect. Notes in Phys., 226, Springer, Berlin, 1985, 196 | DOI | MR

[14] O. I. Bogoyavlensky, Commun. Math. Phys., 51 (1976), 201 | DOI | MR

[15] A. V. Tsiganov, J. Math. Phys., 38 (1997), 196 | DOI | MR | Zbl

[16] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl

[17] E. K. Sklyanin, J. Phys. A, 21 (1988), 2375 | DOI | MR | Zbl