Relativistic Toda Chains and Schlesinger Transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 209-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the auto-Schlesinger transformations for all equations in the known list of integrable relativistic Toda chains. Our construction is essentially based on the equations being Lagrangian and on a standard transition to their Hamiltonian form; in this case, the transition is described by the changes of variables that are invertible but not pointwise. We discuss two examples of another type that has similar properties; these are also integrable Lagrangian equations allowing the Schlesinger transformation
Keywords: integrability, Toda chain, Lagrangian equations, Hamiltonian equations
Mots-clés : autotransformations.
@article{TMF_2004_139_2_a2,
     author = {R. I. Yamilov},
     title = {Relativistic {Toda} {Chains} and {Schlesinger} {Transformations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {209--224},
     year = {2004},
     volume = {139},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a2/}
}
TY  - JOUR
AU  - R. I. Yamilov
TI  - Relativistic Toda Chains and Schlesinger Transformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 209
EP  - 224
VL  - 139
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a2/
LA  - ru
ID  - TMF_2004_139_2_a2
ER  - 
%0 Journal Article
%A R. I. Yamilov
%T Relativistic Toda Chains and Schlesinger Transformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 209-224
%V 139
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a2/
%G ru
%F TMF_2004_139_2_a2
R. I. Yamilov. Relativistic Toda Chains and Schlesinger Transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a2/

[1] M. Jimbo, T. Miwa, Physica D, 2 (1981), 407–448 ; 4 (1981/1982), 26–46 | DOI | MR | Zbl | DOI | MR | Zbl

[2] H. Flashka, Quart. J. Math. Oxford, 34 (1983), 61–65 | DOI | MR

[3] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR

[4] D. Levi, J. Phys. A, 14 (1981), 1083–1098 | DOI | MR | Zbl

[5] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2 (1990), 183–208 | MR

[6] A. N. Leznov, A. B. Shabat, R. I. Yamilov, Phys. Lett. A, 174 (1993), 397–402 | DOI | MR

[7] V. E. Adler, J. Nonlinear Math. Phys., 7 (2000), 34–56 | DOI | MR | Zbl

[8] V. E. Adler, A. B. Shabat, TMF, 111 (1997), 323–334 | DOI | MR | Zbl

[9] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125 (2000), 355–424 | DOI | MR | Zbl

[10] V. E. Adler, A. B. Shabat, TMF, 112 (1997), 179–194 | DOI | MR | Zbl

[11] V. E. Adler, TMF, 124 (2000), 48–61 | DOI | MR | Zbl

[12] R. I. Yamilov, Simmetriinyi podkhod k klassifikatsii s tochki zreniya integriruemykh differentsialno-raznostnykh uravnenii. Teoriya preobrazovanii, Diss. ...dokt. fiz.-matem. nauk, Institut matematiki Ufimskogo tsentra RAN, Ufa, 2000

[13] V. E. Adler, R. I. Yamilov, J. Phys. A, 27 (1994), 477–492 | DOI | MR | Zbl

[14] M. J. Ablowitz, J. F. Ladik, J. Math. Phys., 17:6 (1976), 1011–1018 | DOI | MR | Zbl