Classification of Integrable Divergent $N$-Component Evolution Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 192-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a symmetry approach to solve the classification problem for integrable $N$-component evolution systems having the form of conservation laws. We obtain complete lists of both isotropic and anisotropic systems of this type and find auto-Bдcklund transformations with a spectral parameter for all systems.
Keywords: symmetries, Bäcklund transformation
Mots-clés : evolution equations.
@article{TMF_2004_139_2_a1,
     author = {A. G. Meshkov and V. V. Sokolov},
     title = {Classification of {Integrable} {Divergent} $N${-Component} {Evolution} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--208},
     year = {2004},
     volume = {139},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a1/}
}
TY  - JOUR
AU  - A. G. Meshkov
AU  - V. V. Sokolov
TI  - Classification of Integrable Divergent $N$-Component Evolution Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2004
SP  - 192
EP  - 208
VL  - 139
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a1/
LA  - ru
ID  - TMF_2004_139_2_a1
ER  - 
%0 Journal Article
%A A. G. Meshkov
%A V. V. Sokolov
%T Classification of Integrable Divergent $N$-Component Evolution Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2004
%P 192-208
%V 139
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a1/
%G ru
%F TMF_2004_139_2_a1
A. G. Meshkov; V. V. Sokolov. Classification of Integrable Divergent $N$-Component Evolution Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 139 (2004) no. 2, pp. 192-208. http://geodesic.mathdoc.fr/item/TMF_2004_139_2_a1/

[1] A. G. Meshkov, V. V. Sokolov, Commun. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl

[2] S. I. Svinolupov, V. V. Sokolov, TMF, 100:2 (1994), 214–218 ; V. V. Sokolov, T. Wolf, J. Phys. A, 34 (2001), 11139–11148 | MR | Zbl | DOI | MR | Zbl

[3] C. Athorne, A. Fordy, J. Phys. A, 20 (1987), 1377–1386 ; S. I. Svinolupov, Commun. Math. Phys., 143:1 (1992), 559–575 ; С. И. Свинолупов, ТМФ, 87:3 (1991), 391–403 ; I. T. Habibullin, V. V. Sokolov, R. I. Yamilov, “Multi-component integrable systems and non-associative structures”, Nonlinear Physics: Theory and Experiment, eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, Singapore, 1996, 139–168 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[4] I. Z. Golubchik, V. V. Sokolov, TMF, 124:1 (2000), 62–71 | DOI | MR | Zbl

[5] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | MR | Zbl

[6] F. Calogero, “Why are certain nonlinear PDE's both widely applicable and integrable?”, What is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | DOI | MR | Zbl

[7] N. Kh. Ibragimov, A. B. Shabat, Funkts. analiz i ego prilozh., 14:4 (1980), 79–80 | MR | Zbl

[8] S. I. Svinolupov, V. V. Sokolov, Funkts. analiz i ego prilozh., 16:4 (1982), 86–87 | MR | Zbl

[9] H. H. Chen, Y. C. Lee, C. S. Liu, Phys. Scripta, 20:3–4 (1979), 490–492 | DOI | MR | Zbl

[10] A. G. Meshkov, Inverse Problems, 10 (1994), 635–653 | DOI | MR | Zbl

[11] V. V. Sokolov, A. B. Shabat, Sov. Sci. Rev. C, 4 (1984), 221–280 | Zbl

[12] S. I. Svinolupov, Phys. Lett. A, 135:1 (1989), 32–36 | DOI | MR

[13] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4 (1987), 3–53 | MR

[14] A. V. Mikhailov, V. V. Sokolov, A. B. Shabat, “The symmetry approach to classification of integrable equations”, What is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 113–184 | MR

[15] V. E. Adler, Int. Math. Res. Notices, 1998:1 (1998), 1–4 | DOI | Zbl

[16] A. I. Bobenko, Yu. B. Suris, Int. Math. Res. Notices, 2002:11 (2002), 573–611 | DOI | MR | Zbl

[17] A. I. Bobenko, Yu. B. Suris, Lett. Math. Phys., 61 (2002), 241–254 | DOI | MR | Zbl